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MECHANICS OF SPACE FLIGHT 

0. L. Orodiovskly, D. Ye. Okhotslmskly, 
V. V. Beletslcly, Yu. N. Ivanov, 
A. 1. Kur'yanov, A. K. Platonov, 
V. A. Sarychev, V. V. Tokarev, 

and V. A. Yaroshevslcly 

Progress of space rocket technology brought to life new divisions 

of mechanics. The Idea formed at the boundary of the 19th and 20th 

Centuries of application of Jet engines for going Into space stimulated 

development of mechanics of space flight (1. V. Meshcherskly, 1897; 

K. E. Tslolkovskly, 1903; R. Ooddard, 1919; 0. Obert, 1923; P. A. 
Tsander, 1924-1925; V. Ooman, 1925; R. Eno-Pel'trl, 1930; S. P. Korolev, 

1934, and others). This science studies the motion of spacecraft as 

bodies of variable mass for the purpose of determining the conditions 

of the most economical use of technical means for solutions of the 

basic problem of flight. 

Our Native land, having given to the world such scientists as 

I. V. Meshcherskly arid K. E. Tslolkovskly, Is the native land of the 

theoretical bases of contemporary space rocket technology. The 

beginning of the mechanics of bodies of variable mass Is embodied In 

the remarkable work of the Petersburg University professor I. V. 

Meshcherskly "Dynamics of a point of variable mass" (1897). In which 

for the first time was derived the general equation of motion of a 

point of variable mass.  In 1903 K. E. Tslolkovskly published In his 

pamphlet "Investigation of outer space by rocket Instruments" a solution 

of the first problem of mechanics of space flight, determining the 
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connection between final Q.  and Initial 00 weights of rocket equipment, 
exit velocity of the Jet stream V and Increase In the speed of the 

craft Av during flight In a force-free field: 

*-" 

Using this formula, K. E. Tslolkovskly for the first time showed that 

a rocket can reach space speeds of flight with sufficient relative 
reserve of fuel U, - (C. - C,)/C,. 

The Soviet School of Mechanics of Space Flight ensured proper 

development of this science, necessary for solution of problems of 

Investigating and conquering outer space. The contemporary state of 

development of this field of mechanics takes its beginning from the 

basic works of A. YU. Ishllnskly, A. A. Kosmodem'yanskiy and D. Ye. 

Okhotslmskiy (1946). Below are briefly stated the basic results 

attained by Soviet scientists in the field of mechanics of space 

flight. One can become better acquainted with these questions, and 

also with the works of foreign authors from the well-known monographs 

and survey works of A. A. Kosmodem'yanskiy (1951), I. N. Sadovskly 

(1959), P. R. Oantmakher and L. M. Levin (1959), L. I. Sedov (I960), 

a. N. Duboshin and D. Ye. Okhotslmskiy (1963, 1965), Ye. V. Tarasov 

(1963), I. V. Ostoslavskly (1963), 0. L. Orodsovskiy, YU. N. Ivanov and 

V. V. Tokarev (1963-1966), K. B. Alekseyev and 0. 0. Bebenin (1964), 

0. V. Korenev (1964), V. M. Ponomarev (1965), V. V. Beletskly (1965), 

V. A. Sarychev (1965), V. A. Yegorov (1965), R. F. Appasov, S. S. 
Lavrov and V. P. Mishin (1966) and others. 

,  § 1. Qptimigatlon of the Motion of the 
Center of Masses or a spacecrart. 
general questions or Designing 

or oreit? 

1.1. Equations of the variational problem. Optimization of the 

motion of the center of masses of a rocket is one of the basic problems 

of mechanics of space flight. In this connection was developed the 

division of mechanics of space flight, examining in total optimum 

relationships between weight components of a rocket, taking into 
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account the weight of the basic elements of the propulsion system, 

optimum control of the propulsion system and optimum trajectories 

of space flight. 

In the mechanics of space flight the problem of finding conditions 

of delivery of maximum payload Qw  Is separated by virtue of fts      / 

determining Influence on the Ideology of arrangement and control of 

spacecraft. With this aspect Is connected formulation of the problems 

In the plan of optimization of trajectory of motion, controlling param- 

eters and weight components of the propulsion system. 

The general formulation of the variatlonal problem shown Is that 

it Is required to fulfill an assigned dynamic maneuver of flight from 

a fixed point 0 of phase space of coordinates - speeds (r0, r0) to 

fixed point 1 [r^,  i^) in a fixed time T with maximum payload 0T at 
assigned Initial weight of craft G0. The differential connections 

of this variatlonal problem with the corresponding boundary conditions 

can be recorded In the form 

4--11.    ««9-4, •(D-c.+c, 

r—»,        r(0Hr* rlT)-rt, (1.1) 

Here r, r, 0 are a set of phase coordinates (r and r are the radius 

vector and speed of center of masses of the craft, G Is the current 

weight of the craft), q, P,  • are the set of controlling functions 
and controlling parameters (q Is the mass flow rate of the working 

substance, and P and • are the magnitude and unit vector of direction 
of thrust). As for the remaining designations, J»-Ä(r, t) is the 

R-vector from gravitational forces, F Is the g-vector from other 
external forces (for example, from the force of aerodynamic drag), g 

Is the coefficient of proportionality between mass and weight, and 

G is the weight of the propulsion system. 
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In recording (1.1) the craft is considered to consist of payload 
Qv, reserve of working substance 

*-| 

r 

and propulsion system G . The weight formula of such a craft has the 

form 

6-G«+C»-f6.- (1.2) 

The other weight couiponents (for example, the weight of structural 

elements, the weight of tanks for working substance 0« and so forth) 

conditionally pertain to payload. According to necessity these 

components are also considered In the variational formulation. 

The dimension of phase space describing the state of the craft 

can be Increased with complication of the problem. To phase coordinates 

r, r, 0 can be added new coordinates, for example, t - the current 

time of work of the propulsion system or G- and G - for problems of 

.ptimum discharge of tanks and engine. Then system (1.1) Is supple- 

mented by differential equations describing the change of these phase 

coordinates; in the notted examples these equations are 

^-«t 6»-—n», 6«--n.. (1.3) 

New controlling functions appear: 8(0-1 or 0 is the function of 

switching the engine on or off, «»(0>Ö, »»(OX) is the function 

responsible for discharging the tanks and sections of the engine. 

System (1.1) is represented in the form of ordinary differential 

first or^er equations solved relative to derivatives. This permits 

formulating a variational problem as a Mayer problem and reducing it 

to a boundary value problem for a system of ordinary differential 

equations with finite relationships for controlling functions (for 

greater detail see the book of 0. L. Grodzovskiy, YU. N. Ivanov and 

V. V. Tokarev, 1966). 



The Initial problem 1B formulated thus: for system (1.1) to 

determine controlling functions and controlling parameters q, 9,  *, 

G , ensuring fulfillment of boundary conditions and delivering maximum 

payload G^ - G(T) - G^. 

In the described formulation is assigned a dynamic maneuver and 

initial weight and maximum payload Is sought. Instead of this are 

examined also equivalent formulations: dynamic maneuver and useful 

weight are assigned and minimum initial weight is determlnedj useful 

and initial weights are assigned and minimum time of fulfillment of 

maneuver or the outer limit of some phase coordinate is found. The 

economy of fulfillment of the maneuver can be also characterized by 

another criterion of optlmumness, for example, minimum cost of fulfill- 

ment of maneuver; such an approach is in the initial stage of inves- 

tigation. 

1.2. Basic characteristics of propulsion systems. The formulation 

shown in p. 1.1 of the problem of optimization is organically connected 

with the characteristics of propulsion systems. The given varlational 

formulation should be specified for every type of propulsion system. 

First, it is necessary to indicate functional expressions of 

thrust P and flow rate q through Independent controls « - (u^ ..., 

un) and parameters ir = (w1, .... wj of the propulsion syst-n (regula- 

ting engine performance): 

i> = P(«,»r). ? = «(«.«•). \ (1#4) 
«({)£&,      «• = const   J 

(U is the permissible region of control; into the number of parameters 

«•must enter limiting values of controls •♦). 

Secondly, it is necessary to determine the weight of the propulsion 

system G as a function of parameters «• (the weight formula of the 

engine): 

G^COr). (1.5) 



The characierlstlcB (l.J*)-{1.5) will be defined as basic. 

According to complication problems can require additional Information 

about engine properties, for example, about resource (p. 3.3) *nd 

about Intensity of flow of rejections (p. 4.3). 

Propulsion systems are split up Into three large categories, 

depending upon the main limitation on the regulating characteristic 

(1.4) caused by the nature of physical processes In the engine. The 

main limitation from the point of view of mechanics of flight Is 

characterized by the fact that the optimum operating mode of the 

engine, as a rule, corresponds to the approach to this limitation. 

Such limitations are limitation of the exit velocity of the Jet 

rtream, limitation of power and limitation of the thrust of the 

propulsion system. 

To engines of limited exit velocity (§ 2) belong all thermal Jet 

engines, exit velocity for which does not exceed the limit depending 

on the maximum temperature of the walls of the combustion chamber of 

heat exchanger. The weight of an engine of limited exit velocity 

i pends on maximum thrust (for example, for a liquid-fuel rocket 

tnglne). Characteristics (1.4)-(1.5) for such engines are recorded 

In the form («- (F. V>. w- (f.». V««)): 

P.P,    ,-f. C-T'— (1.6) 
(0<F(f)<FM.. o<r(i)<rM). 

To engines of limited power (pp. 3.1-3.3) belong systems consisting 
of a source of power and a rocKet propelling agent transforming energy 
produced by the source into kinetic energy of directed motion of the 
Jet stream.    The presence of a separate source of limited power 
determines the basic properties and name of the examined category of 
propulsion systems.    The regulating characteristic  (1.4) and weight 
formula (1.5) for an engine of limited speed looks thus: 

p-YVTi,   t-f. c—ir-,-fty— (1^) 



To engines with limited thrust (p. 3.4) belong sail systems, 
for example, solar or isotope sail, the value of thrust of which is 
limited by the maximum area of the sail S„„„: max 

KP^-kS.».    C-TP.«- (1.8) 

A more detailed description of the characteristics of space 
propulsion systems from positions of mechanics of flight is given 
In a book of 0. L. Orodzovslily, YU. N. Ivanov, and V. V. Tokarev 
(1966). 

1.3.    Limitations in the designing of orbits. A complex of 
requirements is imposed on space flight on the whole by a number of 
essential limitations to selection of optimum, in the sense of the 
problem (1.1), orbits of flight (see the survey of G. N. Duboshin 
and D. Ye. Okhotsimskiy, 1965). 

During initial consideration Is essentially investigated the 
whole totality of orbits ensuring, at least in principle, solution 
of the basic problem of flight. For example, during designing of 
flight to the moon it is Important to present all possible trajectories, 
to know how to determine Initial conditions necessary for realization 
of those or other trajectories, to determine kinematic and dynamic 
characteristics of orbits (time of flight, speed of encounter with 
the moon, necessary initial energy, condition of observation from 
assigned points of earth's surface ar.d others). 

During the analysis it is possible to remove orbits which better 
satisfy those or other requirements both with respect to efficiency 
of solution of the basic problem of flight and with respect to 
simplicity and econorr.y of realization. These requirements for the most 
part are contradictory, and the final solution is most frequently the 
result of compromise and calculation of available reel technical 
possibilities. 



One of the most Important orbit requirements is power economy 

af launching «nU orbit achievement. Two basic methods of achieving 

spHce orbits are used: continuous active section and launch from 

si. ellite orbit. The first method is technically simpler; however, 

in certain cases its realltation causes difficulty. The fact is that 

selection of a launch site is inevitably limited, and for acceleration 

jf a spacecraft of an assigned purpose it can be necessary to use 

trajectories steeply inclined to the local horizon. This causes growth 

of losses overcoming gravity and lowering of spacecraft weight. The 

method of continuous acceleration limits the range of directions of 

.peed at the beginning of motion along the orbit, making more desirable 

not only orbits with the lowest possible initial speed, but also 

orbits with the least possible slope of the velocity vector to the 

local horizon at the end of the active section. 

The method of launching from satellite orbit is free from power 

limitations on direction of acceleration. Any direction of velocity 

vector is obtained by the proper selection the time of launching to 

the intermediate orbit of the satellite (what gives aiming with respect 

to azimuth by turn of intermediate orbit together with earth in its 

dally motion) and selection of time of launching from satellite orbit 

(what gives aiming by angle of place at the expense of the fact that 

deparature from satellite orbit occurs in a place where motion along 

the satellite orbit has the required direction). Acceleration of a 

spacecraft both during orbit achievement and during escape from it 

occurs at minimum angles of inclination to the local horizon and ensures 

maximum use of the power potential of the carrier rocket. Mastery by 

Soviet scientists and engineers of a method of launching spacecraft 

from satellite orbit is an outstanding technical achievement. Use 

of such a method of orbit achievement limits only the value of initial 

speed along the orbit, allowing orbit achievement of spacecraft of 

great weight, sharply expanding the range of possible orbits and 

facilitating the conditions for their expedient selection. 

During the use of the method of orbit achievement with exit to 

intermediate satellite orbit, the most desirable space orbits are 

those with the lowest initial speed. During acceleration with 



continuous active section It is Important that both speed and angle 

to the local horizon be as low as possible. 

Another complex of questions connected with designing of orbits 

is investigation of the necessary accuracy of realization of the 

selected nominal orbit and selection of a correction method. In 

those cases in which flight is carried out without correction of 

trajectory on the way. the problem consists in exposure 0' the 

deviation domain of parameters at the end of the acceleration phase 

so that the basic problem of flight could be solved if the deviation 

do not exceed the bounds of the shown region. For example  f the 

goal of the flight is to reach the moon, then deviations of parameters 

of removal are looked for with which the orbits pass through the moon 

and. this means the moon is reached. Naturally, the less constra ned 

the limitations on the region of scattering of parameters of orbit 

achievement, the simpler realization of flight, the less ^ "-t 

for accuracy of equipment ensuring orbit achievement, the lower the 

Zw  of this equipment and the higher its reliability. Therefore, 

it is desirable to select orbits of space flight which allow the 

greatest deviations of parameters of orbit achievement. This require- 

ment can be and usually is in contradiction with optimum --gy of 

orbit, and this situation is characteristic in questions of designing 

orbits. 

It can turn out that the permissible region of initial deviation» 

is excessively small and cannot be reaped by existing technical 

means. Furthermore, knowledge the constants of celestial »panics 

(such as solar parallax or elements of planet orbits) can be insuffi- 

clent so that even ideal fulfillment of conditions of orbit ach evement 

does not guarantee achievement of the goal of space flight. In these 

cases should be used correction of orbit on the way - correction of 

parameters of motion which can be fulfilled by communication of 

pulses of the proper magnitude and direction in certain places of the 

orbit. The orbit can be corrected both once during the period of 

flight and several times. 



Corrrjtlon of orbit requires presence on board of a correcting 

pr -pulslon system and a reserve of fuel. The value of additional 

weight which must be taken on board a spacecraft In connection with 

correction of orbit depends on the value of the correcting impulse on 

the value of total impulse In case of repeated correction. The value 

of correcting Impulse depends on scattering of motion parameters at 

the end of the acceleration phase and will be greater, the greater the 

region of scattering. Furthermore, the value of Impuse necessary for 

correction of orbit depends on the place on the orbit where this 

correction Is realized. For example, If correction Is produced too 

close to the target, then for this can be required a very great change 
of speed and a large correcting pulse, and consequently also considerable 

additional weight on board the spacecraft. 

During selection of orbits preference is given to orbits which 

allow the simplest and most economical correction possible. Simul- 

taneously appears the problem of optimization of correction, i.e., 

such selection of orbit and such selection of correction points on It 

that performance of correction requires minimum total Impulse and 

minimum additional weight on board the spacecraft. 

Solution of the problem of correction is connected with the need 

for exact determination of actual parameters of motion during flight, 

calculation of deviations of parameters of motion from the nominal 

values and calculation of necessary parameters of correction. 

Determination of orbit parameters is a classical problem of 

celestial mechanics. However, its solution for spacecraft is connected 

with fulfillment of a number of specific requirements. For example, 

it is frequently necessary to determine orbit parameters as fast as 

possible. Therefore, the algorithm of calculation, which usually 

contains an iterative process, should be very economical and ensure 

toth a small number of iterations and a short time of fulfillment of 

every Iteration. Of the algorithm of calculations is required also 

high reliabil5ty and dependability, guaranteeing convergence of 

process even with insufficiently successful selection of Initial 

approximation. 
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Accuracy of determination of actual orbit parameters depends on 

composition and accuracy of measured parameters, and also on location 

of the meosured Interval of the orbit and on Its extent. At assigned 

composition and accuracy of measurements, as a rule, parameters of 

actual motion can be determined accurately (and orbits can be 

corrected more reliably and accurately) the larger the section on 

which the orbit is measured. However, unnecessary tightening is not 

rational, since it can lead to correction which is too late and an 

excessively high value of correcting impulse. 

Early correction can be more economical; however, insufficient 

accuracy of determination of orbit parameters by the moment of its 

fulfillment can lead to insufficient accuracy of correction and to 

the necessity of its repeated fulfillment. 

The given considerations illustrate the complexity and contradic- 

tory nature of problems connected with the designing of the system 

of measurements and correction of orbit, i.e., the designing of the 

flight control system.  Optimum solution of the flight control problem 

consists in creation of a system ensuring solution of the basic problem 

of flight the most simply and reliably and the most economically with 

respect to the weights on board. Therefore, during selection it Is 

expedient to prefer those orbits for which it is possible to carry 

out the most optimum control of flight. 

Designing of orbits boils down to exposure and calculation of a 

number of contradictory orbit requirements, part of which is briefly 

shown above, to overall analysis and selection of an orbit which 

satisfies requirements to a maximum extent.  Comprehensive analysis 

of flight requires calculation of a large number of variants.  At the 

same time requirements for accuracy of calculations on the initial 

stage of design are usually not too high.  Therefore, a reasonable 

solution is development and use of different methods allowing simply, 

economically and visually, although with limited accuracy, analyzing 

orbits with respect to satisfaction of requirements placed on them and 

looking for compromise variants clvlng the best solution of the problem 

on the whole. 
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A further stage of designing for selected variants requires 

dr.flnltlzed calculations considering all necessary factors affecting 

spacecraft flight. Such calculations are usually conducted by methods 

01 numerical Integration with use of the most exact constants and 

have as their goal the obtaining of exact values of parameters of 

flight and orbit achievement. Since deflnltlzed calculations are 

frequently very labor-consuming, the problem of development of 

effective methods of calculation Is here not less acute than with 

respect to calculations for the stage of preliminary designing. An 

effective method of deflnltlzed calculation should combine necessary 

accuracy with speed of calculations. Therefore, creation of methods 

requires maximum use of knowledge of the orbit. For example, spacecraft 

motion with respect to the earth Inside Its sphere of action Is closely 

to motion along a conic section with Its focus at the center of earth. 

Motion outside the sphere of action of earth is close to heliocentric 

motion In an unperturbed orbit, etc.  Calculation of these circumstances 

opens the path to Improvement of the method of deflnltlzed calculations. 

Of course, other paths are also possible. 

Methods of Investigation of orbits are essentially determined by 

character of flight.  It Is possible to distinguish multltum orbits 

and orbits with small angular distance. To orbits of the first type 

belong orbits of satellites of the earth, moon, planets, accomplishing 

during the time of its existence a large number of turns.  Investigation 

and designing of such orbits if connected with use of the methods 

which allowing revealing the picture of evolution of the parameters 

of an osculating orbit with the passage of time under the influence 

of perturbing factors, such as the eccentricity of the field of gravi- 

tation, the Influence of light pressure, etc. The problem of calcula- 

tion of the process of evolution can be considered a problem of 

nonlinear oscillations, and wide application of different methods of 

averaging and technology of construction of asymptotic solutions can 

ensure creation of simple and effective methods both for preliminary 

and for deflnltlzed calculation. 
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Orbits with a small angular distance are, for example, orbits of 

flights from the earth to the moon and from earth to Mars, Venus or 

other planets. Orbits of such flights constitute In the first approx- 

imation arcs of conic sections, and questions of evolution do not 

come up here. 

Approximation methods are created either without taking distur- 

bances into account or talcing them into account in a rather rough 
form. Thus, the orbit of flight to Mars can be considered to consist 

of three pieces of conic sections: undisturbed geocentric motion in 

the spere of action of earth, undisturbed heliocentric motion outside 

with its focus at the center of Mars, when motion occurs inside the 

sphere of its action. 

Such are the basic considerations about the designing of orbits 

spacecraft. 

Questions of concrete plotting of orbits are investigated in 

detail and are expounded in "Course of celestial mechanics," of 

M. F. Subbotin (1949, 1965), in works of V. A. Yegorov (1957, 1965), 

M. L. Lldov (1961, 1964), P. Ye. El'yasberg (1963), M. S. Yarov-Yarovy 

(1963), S. S. Tokmalayeva (1963). G. N. Duboshin (1963), D. Ye. 
Okhotslmskiy (1964), N. M. Teslenko (1964), A. I. Lur'ye (1965), I. Kh. 

Segal (1966), S. V. Petukhov (1966) and others. 

§ 2.  Mechanics of Space Flight with 
Engines of Limited Exit velocity 

2.1. General variational problem. Consideration of the variational 

problem of mechanics of flight (1.1) with engines of limited exit 

velocity of the Jet stream (1.6) showed that taking into account the 

influence of the specific gravity of the propulsion system v = GJPnx 

and the specific gravity of construction p = C/C,.« the complete varia- 

tional problem is divided into a dynamic problem and a weight problem 

(G, L. Grodzovskiy, 1966-1967). The dynamic (trajectory) problem 

bolls down to the well-known problem of rocket dynamics of optimum 

motion with an ideal weightless engine of limited thrust determining 

the most accessible final weight of the craft: 

13 



«« ^P" - § (Vm». /•-... *•.. r,. <•„ •-.. r). (2.1) 

The algorithm of transition to solution of the complete varlatlonal 

problem, taking Into consideration the weight of the propulsion system 

0 (depending on maximum thrust) and the weight of construction GB 
(depending on the reserve of the working medium) is shown: 

C, - IIIM,^ |(1 + P) C, (P^i - yPml - PC,]. (2.2) 

Examples of solution of model problems about set of maximum 

energy during vertical climb and about optimum vertical landing In 

a constant plane-parallel gravitational field, about landing from 

circular orbit of a satellite and about set of hyperbolic speed 

during launch from circular orbit of a satellite showed that, in 

spite of small values of specific gravity of an engine of limited 

exit velocity, calculation of the weight of the propulsion system 

essentially affects parameters of optimum motion of a body of variable 

mass and leads to an extreme problem of determination of engine weight 

(maximum thrust) ensuring maximum deliverable payload. 

2.2. The dynamic part of the problem. In connection with the 

separation shown in p. 2.1 of the complete varlatlonal problem Into 

weight and dynamic parts, of fundamental importance are solutions 

of the problem of rocket dynamics of optimum motion with an ideal 

weightless engine of limited thrust P (t)<.Pm,  ensuring minimum total 
Increase in characteristic speed. The first works on the problem of 

optimization in rocket dynamics belong to 1946. Then A. Yu. Ishlinskly 

showed that the condition of constancy of the speed of the Jet stream 

is equivalent to the hypothesis about the fact that during rejecting 

of the Jet stream is liberated kinetic energy proportional to the 

expended mass q; A, A. Kosmodem'yanskiy and D. Ye. Okhotslmskly was 

investigated in detail the problem of optimum ascent of the rocket 

along the vertical to maximum altitude. These investigations were 

further developed in the works of V. V. Beletskiy (1956), V. A. Yegorov 

(1958), V. K. Isayev, A. I. Kur'yanov and V. V. Sonln (1964) and 

others. Essential was the solution published in 1957 by D. Ye. 

Okhotslmskly and T. M. Eneyev (and independently of them by D. P. Louden 
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and B. D. Prayd) of the problem of optimum girding of a satellite Into 

circular orbit. An Important result was obtained about the fact that 

along the optimum trajectory the tangent of the angle of the direction 

of thrust Is a linear-fractional function of time 

*» = £#• (2-3) 

In a work of Yu. A. Gorelov (i960) were determined the conditions 

fulfillment of which ensures extreme motion of a rocket along a 

curvilinear trajectory. Composition of optimum control in the problem 

of rocket dynamics of motion with an ideal weightless engine of limited 

thrust in a plane-parallel gravitational field was investigated in 

detail in works of V. K. Isayev (19^1-1962). He showed the effective- 

ness of application of the principle of maximum of L. S. Pontryagln 

(1961) in the solution of complex problems of rocket dynamics. The 

method of L. S. Pontryagln conquered the special popularity in recent 

years with which is connected the great progress made in the whole 

world in the solution of practical problems of rocket dynamics with 

complex limitations. 

Subsequently the introduction of an extremely successful model 

of a uniform central field permitted solving the problem of optimum 

control of a point of variable mass In a central gravitational field 

in the presence of limitation on Jet thrust (G. Ye. Kuzmak, V. K. 

Isayev and B. Kh, Davidson, 1963).  Another important problem about 

the turning of the plane of the orbit of a satellite is examined in 

detail in works of V. F. Illurlonov and L. M. Shkadov (1962), Yu. M. 

Kopnln (1965, 1967), Yu. N. Ivanov and Yu. V. Shalayev (1965). 

A work of D. Ye. Okhotsimskiy and T. M. Eneyev (1957) also 

initiated investigation of the optimum problems of rocket dynamics of 

multistage systems.  These problems were successfully developed further 

in works of K. A. Pobedonostsev (1958), 0. F. Makarov (1962), Yu. V. 

Kozhevnikov (1963, 1965), V. A. Kosmodem'yanskiy (1964), V. A. Troitskiy 

(1965), A. A. Bolonkln (1965) and others. 
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2.?. Pulse flights. The Influence of the weight of the propul- 

sion system Is Immaterially for maneuvers during the fulfillment of 

which the time of work of the engine Is much shorter than the time of 

fulfillment of the maneuver. For such maneuvers application of Jet 

thrust can be considered pulse application. 

Optimum trajectories with many pulses were Investigated by V. I. 

Charnym (I965), who strictly proved that optimum multlpulse flight 

consists of arcs of conic sections touching In apsldal points. Two- 

pulse optimum flight between orbits with small slope and eccentricities 

was studied by V. S. Novoselovey (1965) and optimum coplanar flights 

between orbits by S. N.'Kirplchnikov (igSh).     Conditions of optimum 

impulse transition of a spacecraft, braked in the atmosphere of a 

planet to the orbit of an artificial satellite were analyzed in detail 

by V. A. Il'ln (1963). Later V. A. Il'ln (1964, 1967) and V. S. 

Vozhdayev (1967) examined the problem of determination of optimum 

trajectory of flight between coplanar circular orbits with the use of 

the method of spheres of action and obtained simpler algebrlac rela- 

tionships between the eccentricities and focal parameters of one- and 

two-pulse flights. One more Interesting Investigation of V, A. Il'ln 

(1967) Is dedicated to the approximate solution of the problem of 

synthesis of trajectory of close circling of the moon with reentry of 

the atmosphere of earth.  In this Investigation Is successfully used 

replacement of spacecraft motion in the sphere of action of the moon 

by the "unfolding pulse" of the field of gravitation of the moon. 

A complex of problems on optimum pulse flights between orbits 

located In a small environment of the base circular orbit, is studied 

In detail In works of G. Ye. Kuzmak (1965. 1967) and N. I. Lavrenko 

(1965, 1967). Analysis of this case Is interesting for two reasons: 

flrs\,, small deformations of orbits in the environment of the base 

circular orbit lead to radical changes of parameters of pulse circuits 

of flights and, secondly, the region of applicability of approximate 

solutions built by such a method is sufficient for investigation of 

a broad class of clrcumplanetary maneuvers. Modified parameters in 

investigations were moments of application of pulses, their components 

and the number .of pulses ensuring minimum total increase in character- 

istic speed. 0, Ye. Kuzmak (1965) by this method solved the 
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two-dimensional problem of optimum flight from the initial orbit to 

a point lying in the plane of the orbit, and the problem of flights 

between arbitrary coplanar orbits. In 1965 G. Ye. Kuzmak and N. I. 

Lavrenko brought also solution of the problem of flights from initial 

orbit to a point lying outside the plane of the orbit, and in 1967 

the same method they examined optimum flights between noncoplanar 

orbits. 

Optimum three-pulse turn of the plane of a circular orbit was 

investigated by L. V. Zakoteyeva and V. V. Polyachenko (1965). 

Optimum orbits of one- and two-pulse flights between points moving 

along one orbit were analyzed in detail by S. N. Kirplchnikov (1966). 

Pulse flights between different orbits were examined in works of 

S. V. Dubovskly (1964), V. S. Novoselov (1965), V.  V. Ivashkin (1966) 

and others. 

§ 3. Mechanics of Space Flights with Engines 
 of Liml-bed power 

The first works on the problem of optimization in problems of 

mechanics of flight with an engine of limited power belong to 1959- 

1961 (J. Irving and E. Blum, 1959; G.  L.  Grodzovskly, Yu. N. Ivanov 

and V. V. Tokarev, 1961). In them were considered the chief features 

of the characteristics of such engines: the limltedness of the power 

of the jet stream and the dependence of engine weight on maximum 

power. The fact of separation of the initial problem into weight 

and dynamic parts was established. Basic properties of optimum 

solutions were revealed: the presence of the best distribution of 

starting the weight between engine and the working substance and the 

advantage of change of the value of thrust in the process of flight. 

Further investigations developed in two directions. The first 

is Inclusion of the real characteristics of the engine in the formula- 

tion of problems of optimization and consideration of modified circuits 

of an engine of limited power. The second is solution of problems 

of optimization for different maneuvers In gravitational fields close 

to real ones. These investigations are accompanied by the development 
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of various Itlnds of procedures which allow using varlatlonal methods 

and the construction of approximate and numerical methods of solution 

of varlatlonal and boundary value problems. 

3.1. The Ideal engine Is characterized by absence of losses of 

wn'-lclng substance and power. Its regulation Is governed only by 

limitation on power, and the weight of the propulsion system linearly 

depends on maximum power (see 1.7) at T " 0. }«„ — oo).  Study of the 

Ideal case Is Interesting because it opens maximum possibilities of 

engines of a given class. 

Here are examined possible variants of control of engine weight: 

constant engine weight (J. Irving and E. Blum, 1959; G. L. Grodzovskiy, 

Yu. N. Ivanov and V. V. Tokarev, 1961), stepwise and continuously 

variable engine weight (0. L. Grodzovskiy, 1961; Yü. N. Ivanov, 1962, 

1964), use of dropped sections of the engine as working substance 

(V. V. Tokarev, 1963, 1965).  In the first case is performed general- 

ization for nonlinear dependence of engine weight on maximum power 

(G. L. Grodzovskiy, 1965). 

Let us describe formulation of the varlatlonal problem on an 

example of the maximum case — continuous discharge of infinitesimal 

sections of the engine (6,- -«» «.(0>0) with their partial transfor- 

mation into working substance (0<x (!)<*•« = ""»K1)-  Part of the flow 

rate a,  equal to (1 - H) «L, i8 not used and abandons the craft with 
zero speed; the remaining part HCL,, transformed into working substance, 

is sent to the propelling agent. The total flow rate through the 

propelling agent q will be composed of flow rate -no    and the flow rate 
of reserve of working substance q . Having demanded qM(

t) -  0» 
we will obtain the case of constant engine weight; at vi^g^ = 0 we 
will have the case of passive discharge of engine sections. 

Let us connect to the system (1.1) the third of the equations 

(1.3) and depict it taking into account engine performance (1.7) 

at 7 = 0,  j«,, — oo): 
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C. = -A. C (0) + C (0) = 1,  G, (f) - max, 

C.= -j,. C,(r)>01 

r=r,        »•(0) = i-,. V(r) = i-1, 

. ^A^cj» (t,.+«»..; 

{' 
«•+«« 

e+K, r(0) = iv i'(r) = i', 

(5.i) 

|e(0|»l. 0</V(0<l, 0<x(0<xI, 
0<fc(0<<». 0<vK(0<oo ■■) 

Here all weights are referred to the Initial weight of the craft, 

flow rates to the Initial mass, and power to the highest possible 

pwer at a given moment. The symbol G designates total weight 

G0 (0 = G., T G,, «)■ 

It is necessary to select the optimum initial value of weight 

G and to construct optimum programs for controls e (<), A'(0. x (0. ?i» (0 

and q*{t).    Design parameters - the specific weight of the engine a 

and the maximum coefficient M ax of transformation of the material 

of the engine into working substance - are assigned; dynamic maneuver 

{«•o. *•#; 'V. *'ii T)    Is fixed. The maximized functional is the final value 

of phase coordinate G coinciding in definition with useful weight 

Analysis of the structure of optimum control made on the basis 

of the principle of maximum of L. S. Pontryagin (1961) permits in 

all cases (1°-««(<)=» 0; 2°— *. (/)>0, x^, = 0; 3° - 9l< (0>0,1 >x-„>0) breaking 

up the initial variatlonal problem (3.1) into weight and dynamic parts. 

The weight part of the problem is solved to the end analytically. 

The optimum partition of initial weight between the engine G^0, the 

reserve of working substance G 0, and the payload G,,. is determined, 

and the connection between payload G^ and the functional 

I 

0 = ^.Ja«A. 

characterizing the trajectory is found. 
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For the case of constant engine weight (j,(«) = 0) 

C-^-c.. c.Mi-Kä»)' (0<<i»<i); 

for the case of passive discharge (««(')>0, xm,j; = 0) 

(5.2) 

iVira-Gn at   •i-<G?<l, 

'    \-J- at    0<G«<1; 

'"l-i-expCl-iiPjat   -j-<<1,<00: 

(5.3) 

for the case of active discharge  (»«(0>0, l>xllulx>0) 

Gm= 

K-Ga        atC<G,<l,     0<xMI<T, 

and 0<e,<l.     -J-<XBU<1. 

at 0<GK<C,     0<x-M<-s- 2 ' I «(I-XMI) 

(l-x„I)(l-^-)-«-„ln^ + 

+Glt-K  atC<C,<l, 0<x1I ii^ j 

and0<6«<l, \<*mMI<U 

C-xMElnC-jTIZ|=5ln^ atO<6,<C,0<xl 

(Js:=4■J,-«+}'/T'4"+(1--x~»)C-•    C=TTT 

.<4 
-»"■M«   ^ 
-HUI) / 

(3.^) 

Reserve of working substance is calculated as 0^=1—6,—6»,. 
The current values of combining weight G(t) and weight of engine 
G (t) are expressed through the current value of the integral  ^(t). 

M 

Analogous procedure is made in the case of instantaneous discharge 

of final sections of the engine. 
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The dynamic (or trajectory) part of the problem boils down to 

minimization of the integral from the square of rocket acceleration 

with differential connections - equations of motion 

;=r,     r{0) = r,.  r(r) = r„ | (5.5) 

r = ««+Ä. *(0) = iv  r(r) = r, 

(«(l)>0, |»(«)|-1) 

or,  after exclusion of the latter,   to minimization of the  Integral 

functional 

-Jt(r, Ol'd« (5.6) 

(r(0) = r,.   r(0) = r^     r(T)=rt,     r{T) = rt)- 

An analysis was made of the properties of extremals, and solutions 

were analytically obtained of a number of model problems (G. L. 

Grodzovskiy, 1961; Yu. N. Ivanov, 1961, 1964; V. V. Tokarev, 1961, 

1964; Yu. V. Shalayev, 1964; V. K. Isayev, 1962, 1964; V. V. Sonln, 

1962, 1954; B. Kh. Davidson, 1964; V. V. Beletskly and V. A. Yegorov, 

1964; L. A. Lebedev and S. A. Sakovskiy, 1964). Detailed numerical 

solutions were obtained, and a number of approximate analytic solutions 

were built for problems of flight to planets of the solar system and 

maneuvers in the vicinity of a planet (G. L. Grodzovskiy, 1961; Yu. 

N. Ivanov, 1961, 1964-1965; V. V. Beletskly, 1964-1965; V. A. Yegorov, 

1964-1965; V. G. Yershov, 1965; V. K. Isayev, A. I. Kur'yanov and 

V. V. Sonln, 1964; S. A. Pokrovskaya, 1964; G. B. Yefimov and D. Ya. 

Okhotsimskly, 1965, and others). 

3.2.  Unregulated engines are characterized by constancy of thrust 

and flow rate, only the turning off of the engine is allowed, (then 

thrust and flow rate are equal to zero), and no limitations are put 

on change of direction of thrust. This is the second extreme case 

of regulation. 
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A variatlonal problem for unregulated engines Is also divided 
into weight and dynamic parts. The latter. In contrast to the Ideal 
case, contains two engine parameters - Initial rocket acceleration 
aa=gPlGl)  and exit velocity V (for dlmenslonless flow rate n =■ «/C, = 
= atIV),  but Is universal for all types of unregulated engine (Yu. N. 
Ivanov and Yu. V. Shalayev, 1965). The weight part Is a problem of 
minimization of a function of two variables 

G.-m«,.v{c,-G,(P, F)--^.r,(-g-. V) (5.7) 

and can be solved for every concrete type of engine G (P, v), as 
only the solution of the dynamic of the problem T (a0, V). 

The dynamic part boils down to a variatlonal jroblem about the 
minimum time of work of the engine T^ at the assigned time of motion 
T (or any of Its equivalents): 

*» = «. M0) = 0,  «„(n-min. 
r-r. *•(()) = r,.  r(D=r,. 

K,*—cent, «p)-l or «, |«(f)|-l). 

(5.8) 

Here it is required to construct optimum programs of switching 
on (ft (I) = 1) - turning off (ft (<) = 0) the engine and orientation of 
thrust vector e(t). 

Although formulation of this problem is suitable for any unregu- 
lated engine, solution results are divided into two large classes 
(for engines of small thrust and for engines of large thrust), depending 
upon tl)e range of parameters a0 and u for winch it is obtained. The 
last rertkrk touches numerical and approximate analytic solutions. 
In the class of such solutions pertaining to engines of small thrust 
li investigated approximately the same set of maneuvers as for an 
ideal engine of limited power (V. N. Lebedev, 1963, 1966; B. N. 
Rumyantsev, 1963; N. N. Molseyev, 1966; V. V. Beletskly and V. A. 

Yegorov, 1964; Yu. N. Ivanov, and Yu. V. Shalayev, 1965; Yu. M. Kopnin, I965; 
R. P. Avramchenko, V. M. Bezmenov, V. A. Vlnokurov and V. V. Tokarev, 
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1967, and others), Indeed, less complete numerical results were obtained 

for Interplanetary flights. 

3.3. Real engines are characterized by the presence of losses of 

working substance and power and by limitations to control range and to 

resource; furthermore, the weight formula of the real propulsion 

system contains several components.  In general the problem of 

optimization here is no longer divided into weight and dynamic parts 

and should be solved as an integral problem. 

Besides the weight components of the craft, which were considered 

in the preceding account, it is possible to name still at least two: 

the weight of tanks for working substance G( = PC,»» and the weight of 

the propelling agent CT =yP««.   The variation formulation (1.1) 

will look thus: 

(3.9) 

^=—2F'   ö(0)=C,. Ca = G(r)-p(e,-G(7'))- 

r = r, r(0) = r.,   »•(7')=*„ 

r = -tf-e+Ä,  r(0) = f,.  «-(rHr,  ♦ 
(0<P(t)<Pmu,     0<iV(0<ArB„,  |e(OI = t)- 

A feature of this problem is that the maximized function G.,,. 

depends on limitations N „ and Pm  . superimposed on controls N(t) r UlclX IIlclA 

and P(t) and subject to optimization. By introduction of dimensionless 

control P{t) = P(t)IPa„. "JV (0 = ^ (t)IKmu  and formal equations 'Pmx = 0, Ä
r
m„ = 0 

the problem can be reduced to the problems of optimum control without 

parameters, for investigation of which we will use the principle of 

maximum in the standard formulation (Yu. N, Ivanov, 195^). 

Very acute for engines of limited power Is the problem of 

resource, since the optimum time of work of such an engine coincides 

with the whole time of motion of composes a considerable part of It. 

A general method Is developed of solution of variational problems with 

a fixed time of control actions, on the basis of which Is solved a 

number of problems of optimum control of an engine with limited 

resource (Yu, N. Ivanov, 1963, 1965; V. A. Vlnokurov, 1965). 
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C=-«ft. 6(0)=G,. C, = G(7')—C, = max, 

^•. • M0)=0, Mrxr». 
r=r,. rCO)»!-,, »•(r)»r„ 
*-*£* + *. e(0)-.r,. «•(7) = *,. 

The idea of the method Is the Introduction of a new phase coor- 
dinate t - the current time of work of the engine - and a new 

10, 
controlling function «(«)»1   or 0»  responsible for the switching on 
(« = 1) and off of the engine (8 - 0).    The connection between them is 
given by the differential equation   «„ - « with boundary conditions 
t*{0)-0,   »„(fxr,,, where T    is the assigned resource of the engine. 
In equation (1.1) thrust P and flow rate q are replaced with P6 and 

q6: 

(3.10) 

Here an analysis of optimum control is given, and analytic and 
numerical solutions are obtained for maneuvers in force-free and 

central fields. 

The formulation is given and a procedure is developed of solving 
the problem of the best approximation of the continuous law of control 
to plecewise-constant control with the assigned and optimum number of 
levels. Such a problem appears, for example, in case of application 
of an engine with a narrow range of regulation when the ideal program 
of thrust requires deep regulation. 

The procedure, like the preceding one, is based on the use of 
relay controlling functions Ml) = 1 or 0. Thrust P is presented In 

the form 

/ P<iii, •»)■=•((.••(«A+1«i)*»+"+,,«-»)V»+,,«-«)d«-«+Ä«     (5.11) 

where ir. are constant parameters determining the altitude s of levels 
of thrust i», >= «i -i- a, + .. • + «.. P» •=«» + ...+ n P. = ",:  controls 
j( (I = i » — 1) are Independent. Having placed expression (5.11) 
in equations (3.9), it is possible to obtain conditions for optimum 
values of parameters ir^; the weight of propelling agent vi»,,,,, must 
be replaced with the sum of the weights of s variously tuned propelling 

agents ylP, = yZia,. 
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Further Investigation is conducted with the help of the principle 

of maximum. Analytical and numerical examples are obtained of solution 

of the problem of step approximation of thrust for basic maneuvers 

(Yü. N, Ivanov, 1964, 1966). 

The features of optimum controls of engines with real regulating 

characteristics in the presence of additional limitations on control 

parameters (V. K. Isayev, 1962, 1964; V. V. Sonln, 1962, 1964; B. Kh. 

Davidson, 1964; A. I. Kur'yanov, 1964; Yu. N. Ivanov, 1966). 

3.4. Propulsion system related to engines of limited power and 

limited exit velocity. A large number of Investigations hcve been 

conducted on problems of optimization of mechanics of flight with 

engines which are modifications of two basic types, and with engines 

of other schemes. To them belong: 

engines of limited power with batteries of energy, thermal or 

electrical (G. L. Grodzovskiy, 1965, 1967; B. N. Klforenko, 1965-1967; 

V. V. Tokarev, 1965); 

engines of limited power and limited exit velocity with accumula- 

tion of atmospheric gas utilized as working substance (V. V. Tokarev, 

1965; Yu. M. Fatkin, 1965, 1967; G. L. Grodzovskiy, 1966); 

solar and isotope sails (F. A. Tsander, 1924; A, N. Zhukov and 

V. N, Lebedev, 1964; K. G. Valeyev, 1964; G. L. Grodzovskiy, 1966); 

engine with solar and Isotope sources of energy (A. Ye. Ilyutovlch, 

1967; R. N. Ovsyannikov and L. N. Semenov, 1967). 

§ 4.  Additional Aspects of the Problem of 
Optimization in the Mechanics of Space 
 Flight  

4.1.  Optimum combination of engines of various types. Solution 

of the problem of optimization does not end with selection of the best 

parameters of a given type of engine.  It Is still necessary to clarify 

what type of engine is suitable to use for execution of a given maneuver. 
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and to determine the expediency of Joint use of various types of engines 

on one craft. 

Let us assume that on the spacecraft are two engines 1 and 2, 
which can work either In parallel or In series.    Then the flow rate 
q and thrust vector Pe In equations  (1.1) are replaced In parallel 
operating conditions with 

»-»i+ft..   P»=Pi«i + Ptel, (4.1) 

and In series operating conditions with 

« = «i«+ft(l-ft).     Pe = Ptefi+Piet(i-6). (4.2) 

where «(t) = l. when engine 1 Is on,  and 8(0=0, when engine 2 Is on. 
Introduction of this relay controlling function permits considering 
the controls of engines 1 and 2 Independent.    The weight of engine 
G   In boundary conditions  (1.1)  is recorded In the form of the sum 
G,= C« + 6«.     The regularity (1.4) and weight (1.5) characteristics 
of engines 1 and 2,  as usual,  lock the varlatlonal problem. 

Cases are Investigated of parallel and series operating modes of 
engines of limited exit velocity  (large thrust) and limited power 
(small thrust), and examples are given of construction of the boundary 
of the field of application of engines of limited power for different 
maneuvers   (Yu. N.  Ivanov, 1964,  1966). 

4.2    Modification of the criterion of optlmumness.    Usually during 
the formulation of varlatlonal problems is used the weight criterion 
of optlmumness - the maximum payload at the assigned starting weight 
(dynamic maneuver is fixed). 

If the same maneuver is to be performed repeatedly,  it is expedient 
to replace the weight criterion with the cost criterion.    The cost of 
fulfillment of the maneuver is composed of the cost of achievement of 
initial orbit and the costs of the basic components of the craft; the 
latter are considered proportional to the corresponding weights. 
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The cost of delivery of a unit of payload is minimized.    The 
functional of the problem has such a structure: 

where  s    and s    are  dimensionless  coefficients characterizing the cost 
of the engine and the working substance.    Minimum is looked for with 
connections   (1.1)-(1.2).     As a result  optimum controls  remain the same, 
and the optimum values of constant controlling parameters — weight 
relationships,   etc.,   changed  (V.  V.  Tokarev,  1966). 

For the purpose of reducing expenditures  of designing and develop- 
ment of a propulsion system,  the problem is posed of selection of 
parameters of a universal engine   (one  or more)  ensuring fulfillment 
of maneuvers from a certain region B 

• -(r„ «ti *•„ «v DfiA (4.4) 

The quality of fulfillment of every maneuver b Is characterized 
by the function x(T) - maximum payload G^ or minimum cost S.     The 
controlling functions of the engine «(t)  from (1.4) are  selected in 
such a manner that  connections  (1.1)  are  satisfied and the extremum 
of functional x(T)   is attained: 

«tr «(T1) = *,(*. ir). (4.5) 
'VKO 

Engine parameters ir besides are fixed, controls u(t)  are selected from 

the permissible region U and can be different depending upon maneuver 

parameters b. The problem of construction of optimum control ii(t) 

will be considered solved and dependence (4.5) known. 

Maneuver parameters b can with frequency v take any values from 

fixed region B or fixed discrete set B,  The frequency v(b) of repeti- 

tions of maneuver b is recorded through distribution function F (b) 

with the help of the Integral of Stlelt.jes ( step distribution functions 

are allowed). The frequency V(6£ä') of repetition of maneuvers 

belonging so subdomain B'cB,    Is equal to 
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ir(»6B')= $ dM»)  {j<if»(6) = l) (ü.6) 

Vector #r of the engine parameters for all values of *6Ä can 

take only one value - the requirement of universality of the engine 

for the assigned class of maneuvers. If it is possible for every 

maneuver b to select Its own system w(b), as in the preceding formula- 

tions, then it Is possible to ensure the greatest (least) value of 

functional (4.5) 

«tr«(r)-«tr «,(»,«•)»«, (6), (4.7) 
-OKU       mfW ' ' 

i.e.,  the Ideal solution.  A universal engine will ensure a value of 
functional (4.5) less (greater) than (4.7), with the exception of that 

maneuver b for which parameters of a universal engine w are optimum in 

the sense of condition (4.7): 

{>0 If max X(T) i8 looked for, 
«J. if minx(T) is looked for,  C4'8) 

The effectiveness of a universal system depending upon the 

character of the problem can be characterized either by the functional 

averaged from all maneuvers •€* referred to the ideal value 

(^.9) 

or by the averaged loss  (4.8) 

If distribution function F (b)  is known,  then the problem boils 
down to detecting ext^Xj) or min  (&*) for parameters w,  i.e.,  to 
the problem on extremum of function of several variables  (V. V. 
Tokarev,  1964,  1966).    Solution of the variational problem (4,5) is 
considered found for any b€B and w€W; otherwise the problem of 
universality bolls down to the problem of optimum control of the 
distributed syctem (YU. V.  Kozhevnikov, 1966). 

28 



If, however, distribution Pv(b) is now known beforehand, then the 

game approach is used. Distribution Fv(b) such as would maximize 

loss (4,10), and parameters w are looked for such as would minimize 

this loss. In the case of a continuous game and an Integrand convex 

with respect to w (4.10) the problem becomes one of detecting minlmax 

Solution of the problem of unlversallzatlon In such a formulation 

determines engine parameters optimum in the following sense: whatever 

distribution F (b) of recurrence rate of maneuvers is assigned, loss 

(4,10) will not exceed the value found (V. V. Tokarev, 1966; Yu. M. 

Fatkln, 1966). 

After the parameters of a universal engine are selected, for 

every concrete maneuver is determined the optimum reserve of working 

substance (V. V. Tokarev and R. F. Avramchenko, 1967). 

4.3. Questions of reliability in problems of optimization. 

During flight the propulsion system can be acted upon by accidental 

factors causing failures. In accordance with the character of processes 

leading failures, the probability of failures can depend on time, 

coordinates, engine parameters and craft and on the operating conditions 

of the engine. Therefore, calculation of reliability factor leads to 

change in habitual programs of optimum control and optimum parameters. 

The intensity of flow of failures, K, is assumed known as a 

function of time t,   coordinates r,   controlling functions it and param- 

eters w of the engine; 

X-M«. ... M. ir). C4-12) 

With the assigned probability R it  is  guaranteed that in every 
realization of maneuver the value of the criterion of quality will 
be not less  (not more) than the calculated value  (for example, the 
actual fuel consumption will not exceed calculation). 
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In the ca e of a monosectlonal engine this condition coincides 

with the condition of unfailing work of the engine during the time 
of fulfillment of maneuver 

r 
U(«. r(«), M(I). ir)A<-lnfl. (4.15) 

To equations   (1.1) in accordance with (4.13) is added the equation for 
the additional phase coordinate A responsible for reliability 

A-X.     A(0) = 0.    A(r)<-lnÄ, (4.14) 

after which the problem a standard problem of optimum control, which 
is solved by the method of L. S.  Pontryagln. 

When the  intensity of flow of failures X and the  full time of 
motion T are great  flU„r > 1),    then a monosectlonal propulsion system 
cannot ensure an acceptable level of payload with a sufficiently high 
probability of realization.     In this case the propulsion system  (or 
its most unreliable elements)  should be divided  into autonomous 
sections.     Sectlom   art considered equivalent;   damage  of every section 
leads  to impairment of engine performance  (for example,  to decrease 
in power for engines of limited power), but does not cause cessation 
of work of the engine on the whole;  all sections work in parallel. 
Regulating  (1.4) and weight   (1.5)  characteristics  of the engine will 
contain now still a number of working sections 

P = P{m.H:n).    , = ,(«. .r. «).      | 
C^C^Nvn,),     m(t)(.V, «• = const. / K*-^   ) 

In order to guarantee here with the assigned probability R 
realization of values of functional not less  (not greater) than 
calculation values,  it is necessary to construct a law of damages 
n(t)   (nonaccidental function), which with probability R limits from 
below all realizations n(t)   (random functions): 

l>|»(t)>"(0 at     0<t<ri>A. CMS) 

?o 



Is proven that at sufficiently high probability fl(l-Ä<l) condition 

(^.IS) is fulfilled, law n(t) is constructed in the following way: 

*(«)=«,—/ at tj<t<:t).„ 
«/fl 
J X(«. r{t),  «(«), ,r)dt = ^±?. (/ = 0. 1 m; tn.t>T) 
'l 

(4.16) 

(analog of condition (4.13)).  Relationships (4.16) mean that if by 

instant t, J sections of n0 are damaged, then In the interval (t., 
tj+l) 

with probability Ä not one of the (n0 - j) remaining sections 

will be damaged. 

Relationships (4.14), (4.16) are Joined to equations (1.1). A 

varlational problem is obtained with breaking right parts (n(t) is a 

step function) and conditions of isoperimetericness, determining the 

position of breaks (Integrals in (4,l£)). 

At a large number of sections (n,, >■ 1) It Is possible to construct 

a continuous approximation of the step law (4.16) 

;= x 
^n,  ii(0) = /i„  n(7') = opl (4.17) 

and therby to free from breaks the right sides of equations and condi- 
tions Isoperimetericness. Integral characteristics with such approxi- 
mation are  sufficiently exact,   starting with   n0 « 10. 

For all stated formulations  investigation is made of general 
properties  of optimum control;  analytic  solutions  of model problems 
are  obtained.     The problem is  formulated of finding the optimum 
probability fl of  realization of calculation characteristics   (for cargo 
shipments);  examples  of  its solution are given  (V.  V,  Tokarev,   1962, 
1964,  1966). 

4.4.     Construction of analytic   solutions close  to optimum.     Varla- 
tional problems  appearing in examining problems of optimization lead, 
as  a rule,   to complex systems  of differential equations.     Finding 
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optimum controls and optimum trajectories of motion In analytical 

lorm Is never or almost never possible. However, analytic solutions 

are of special Interest in connection with their clarity and the 

possibility of wide parametric analysis. 

These Indubitable merits served as a base for development of a 

different series of procedures and methods of detecting of solutions 

In final form. Of course, these solutions are given at a price of 

replacement of true gravitational field with a simple one and deviation 

from the criterion of optimumness of control. The greatest attention 

is paid to elementary maneuvers with assigned orientation of a vector 

of rocket acceleration constant in modulus (F. A. Tsander, 1924-1925; 

A. I. Lur'ye, 1962-1963; V, F. Illarlonov and L. M. Shakadov, 1962; 

M, K. Cheremkhln, 1963; Yu. P. Gus'kov, 1963; G. Ye, Kuzmak and Yu. 

M. Kopnln, 1963; D, Ye. Okhotsimskly, 1964; V. V. Beletskiy, 1964; V. 

A, Yegorov, 1964; N, N. Moiseyev, 1964, 1966; V. V. Larlchev and M. 

V, Reyn, 1965; L, D, Nikolenko, 1965; Yu. G, Yevtushenko, 1966; A, A. 

Bolonkin, 1965, and others), A detailed survey of these works belongir.- 

to a trajectory with a small thrust is contained in a book of G. L. 

Grodzovskly, Yu, N, Ivanov and V. V. Tokarev (1966). 

4.5, Numerical methods of construction of optimum solutions. 

As was already noted, in an overwhelming majority of cases investigation 

of the problem of optimization leads to the necessity of solution of 

complex varlational problems, which is impossible without the use of 

effective numerical methods.  In connection with this in problems of 

mechanics of flight find wide application existing numerical methods 

and, on the other hand, during solution of specific problems numerical 

methods are developed. 

Methods of numerical solution of varlational problems are divided 

into direct and indirect methods. The former are based on Iterative 

processes of series decrease (increase) of functional; for application 

of indirect methods the varlational problem is preliminarily reduced 

to a boundary value problem for a system of differential equations. 

Let us be limit ourselves to enumeration of those methods which are 

most often used in problems of flight mechanics: 
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gradient descent in space of phase coordinates   (L. V. Kantorovlch, 
1945,  1947-1948;  B. A. Samokish,  1957;  V. A. Brumberg, ±962; Yu. N. 
Ivanov,  1964;  Yu.  V.  Shalayev,   1964,   and others); 

gradient descent in space of controls   (D.  Ye,  Okhotslmskly, 
1946;  L.   I.   Shatrovskiy,  196£;  T.  M.  Eneyev,  1965;  I.  A.  Krylov and 
F.  L.  Chemous'ko,  1962,  and others); 

functional method of Newton  (L.   V.  Kantorovlch,   1948;   G.  P.  Akllov, 
1949; V.  A.  Vlnokurov, 1965; Yu.  N.   Ivanov, 1965,  and others); 

flnlte-dlmenslonal gradient method  (I,  S.  Berezln and N.   f 

Zhldkov,   1961,   and others); 

flnlte-dlmenslonal method of Newton  (T.  M.  Eneyev,  A.   K.   Platonov 
and R.  K.   Kazakov,  I960;  E.  L.  Akly and T.  M.  Eneyev,   196:5;  M. K. 
Gavurin,   1958;  V.  K.  Isayev and V.   V.  Sonln,  1963,  1965-1966;  V.  N. 
Lebedev,  1963;  B.   N.  Rumyantsev,   1965,   and others); 

methods based on dynamic programiiiing (R.  Bellman,  I960;  N,  N. 
Molseyev,   1964-1965;  I.  M.  Sharonov,   1966,  and others); 

methods based on the principle  of optimumness   (V.  F.   Krotov, 

1962-1963). 

§ 5.     Mechanics of Entrance of Spacecrafts 
into the fltmosphere  of a Planet 

For a motion of a spacecraft in the period of re-entry into the 
atmosphere of a planet the appearance of large aerodynamic overloads 
and heat  flow acting on the craft  is  characteristic. 



Thereforr, already In the first Soviet works dedicated to prospects 

of space flight - of S. P. Korolev (193t), F. A. Tsander (see book 

lyol) and Yu. V. Kondratyuk (ig'+T) - attention was turned to the 

importance of investigation of this stage of flight, and recommendations 

were contained on guaranteeing the safe lowering of the craft onto the 

surface of the planet. 

Detailed analysis of trajectories of entrance of spacecrafts 

into the atmosphere of planets is given in works of V. A. Yaroshevskiy 

(1964-1965), where is used a dimensionless nonlinear differential 

second order equation connecting altitude and speed of flight. This 

equation has the form 

■Ä-V^-i^. (5.1) 

where F- ViyWg   is the ratio of speed to circular speed, Cv is the 

coefficient of lift, C Is the drag coefficient corresponding to 

circular speed V = 1, R is the radius of the planet, X is the logarith- 

mic gradient of density. 

c, 
a» r/?p. 

where S and m are the characteristic area and mass of the craft, p 

is the density of the atmosphere, and speed V is connected with varlablr 

x by the relationship 

^ £*WJL (5.2) 

(V = e"x when C ■ const). The local flight-path angle is determined 

by the formula 

0 1=4-. (5.5) VJK <** 
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If speed of entrance Into the atmosphere Is close to circular, then 

the solution of this equation In a number of practically Interesting 

cases can be obtained In the form of a series of different structure 

depending upon the value of the angle of entrance Into the atmosphere, 

the value of the lift-drag ratio, and the law of change of drag coeffi- 

cient of speed. With the help of such a method are investigated 

ballistic trajectories of crafts with small lift-drag ratio. 

For analysis of trajectories of entrance of crafts with high 

lift-drag ratio — glide paths and trajectories with reflections - 

is used the method of averaging nonstatlonary nonlinear oscillations. 

If the speed of entrance into the atmosphere exceeds orbital 

velocity, then the equation of motion will be converted In such a 

way as to obtain approximate relationships connecting conditions 

of entrance Into the atmosphere with parameters of trajectory at 

the point of achievement of minimum altitude during the first descent 

into the atmosphere. With the help of these relationships is found 

a simple approximate formula for the width of the corridor of entrance 

into the atmosphere, valid for crafts with not too low a lift-drag 

ratio. The reverse problem is examined of finding of the law of 

change of lift at an assigned dependence of altitude on flight speed. 

Inasmuch as all these solutions are obtained for dimensionless 

variables, the results of work are applicable to trajectories of 

entrance into the atmosphere of different planets. 

The trajectories of entrance into the atmosphere of a planet 

were examined by Yu. M. Kopnin (196?). Introduction of special 

variables permitted reducing the problem to series determination of 

the trajectory of satellite in a plane of scanning and projection 

of the trajectory on the surface of the planet.  Approximate solutions 

are obtained which allow analyzing the influence of values of lift- 

drag ratio and angle of roll on parameters of yawing motion. We 

consider the reverse problem of determination of the law of change 

of angle of roll according to the assigned projection of the space 

trajectory on the planet surface. 
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A number of works is dedicated to determination of optimum 

trajectories of entrance into the atmosphere. 

D. Ye. Okhotslmskly and N. I. Zolotukhina (1964) examined 

trajectories the lift of which takes alternately maximum negative 

value and found optimum sequences switchings of lift which allow 

minimizing maximum overload obtainable on a trajectory of entrance 

into the atmosphere. A. A. Shilov and Yu. N. Zhelnln (1966) investi- 

gated the problem of control of lift during entrance of a craft into 

the atmosphere and established laws of control optimum In the sense 

of minimization of maximum overload. 

In a work of I. S. Ukolov, Ye. A. Tyulin and E. I. Mitroshin 

(1967) Is examined a scheme for controlling longitudinal distance 

of the point of landing of the craft during descent into the atmosphere 

based on analysis of the dimensionless equation of motion. Laws 

of switching lift are found which ensure a quality of control close 

to optimum. 

In a work of V. S. Vedrov, G. P. Vladychin, A. A. Kondratov, 

G. L. Romanov and V. M. Shalashkov (1966), and also in a work of 

V. S. Vedrov, G. I. Vladychin and I. A. Rubtsovoy (1967) are obtained 

simple laws of control of a craft on the section of descent into 

the atmosphere ensuring the fastest removal of a winged craft on a 

landing strip. 

G. Ye. Kuzmak and V. A. Yaroshevskiy (1964) examined uncontrolled 

motion of an exisymmetrlc-craft around the center of masses during 

entrance into the atmosphere. With the help of the method of averaging 

of nonlinear nonstantlonary periodic motions is analyzed the influence 

of initial conditions of angle of attack and angular velocities on 

amplitudes of oscillations of a craft In dense layers of the atmosphere. 
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§ 6. Motion of an Uncontrolled Artificial 
Satellite with Respect to the Center 

of Masse"? 

A number of geophysical and dynamic problems connected with the 

study and conquest of outer space requires analysis of the 

rotation of an artificial object In outer space relative to its 

center of masses. Without such analysis It Is difficult correctly 

to Interpret the readings of Instruments on the satellite; motion 

near the center of masses affects orbit parameters and time of 

existence of the satellite; there is also a number of other problems 

requiring knowledge of the orientation of the satellite in space. 

One should especially note the range of questions connected with the 

possibility of obtaining a passive orientation of satellites, i.e., 

orientation caused by the Influence of moments of external forces. 

Essential in these problems is the finding of the natural oriented 

positions of the satellite and analysis of the stability of these 

positions and motion in their environment. 

Motion of a satellite around the center of masses can be some- 

whit conditionally divided into two basic types - rotary and 

Uoratlonal.  In the case of rotary motion the kinetic energy of 

rotation of a satellite essentially exceeds the work of moments of 

external forces and the motion of a satellite in a short Interval 

of time close to undisturbed motion corresponding to the absence of 

moments of external forces.  Moments of external forces will put into 

motion small disturbances, which, however, can be stored with flow 

of time, leading to essential evolution of motion.  If, however, 

the kinetic energy of rotation of the satellite is low as compared 

to the work of external forces (or is comparable with it), then 

motion of the llbrational type - oscillation of the satellite near 

a certain oriented direction (radius vector of orbit, vector of 

magnetic Intensity of terrestrial magnetic field, etc.) is possible. 

Let us note that during Investigation of motion of both types 

are widely uf.ed contemporary methods of investigation - asymptotic 

methods of the theory of oscillations, theory of stability, numerical 

methods of analysis, etc. 
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6.1. Moments of forces acting on a satellite.  Investigation 

of satellite motion around the center of masses usually assumes 

that the dependence of moments of forces acting on the satellite on 

Its position and speed of rotation Is known.  These moments In 

general depend on a complex manner on satellite configuration, 

distribution of masses, properties of the material of which the 

satellite Is made and the physical properties of the space around 

the satellite. Therefore, calculation of moments of forces Is an 

Independent, sufficiently complex problem. This problem Is given 

much attention In works of V. V. Beletskly (1958-1959, 1963, 1965), 

G. N. Duboshln (1958), A. A. Karymov (1962), A. I. Lur'ye (1962- 

1963), V. A. Sarychev (1961), F. L. Chernous'ko (1965-1966) and 

others.  In these works model formulas approximating exact expressions 

of moments of forces are offered or exact formulas for concrete 

configurations of the satellite are calculated. 

6.2. Equations of motion.  During Investigation of llbratlonal 

motion are usually used linear or nonlinear equations of oscillations 

In a system of coordinates selected In a suitable manner. As 

variables are most frequently used angles of the type of angles of 

pitch, bank and yaw. Equations In direction cosines frequently turn 

out to be convenient for Investigation of questions of stability. 

It turned out to be a fruitful Idea to use as variable 

components the vector of angular momentum along the fixed axes and 

the angles of Euler In a system connected with the vector of angular 

momentum.  The equations of motion of a solid In these variables for 

the first time were offered, apparently, by B. V. Bulgakov (1955), 

but were developed and found concrete application only with the 

appearance of problems of the motion of artificial satellites 

(V. V. Beletskly,  1958, 1961, 1963, 1965; F. L. Chernous'ko, 1963, 

and others).  These equations are convenient for Investigation by 

asymptotic methods and in different forms and modifications are used 

for analysis of rotary motion.  Also used are other forms of equations; 

for example, in problems connected with numerical finding of motion, 

Rodrlgues-Hamllton parameters are sometimes used. 

38 



6.?.  Stabilization and llbratlonal motion of a satellite In a 

gravitational field of forces. Equations of motion of a satellite In 

a gravitational field In circular orbit allow a particular solution - 

relative equilibrium In an orbital system of coordinates.  In this 

state of motion the main central axes of Inertia of the satellite 

coincide with the raldus-vector of the orbit tangent to orbit and 

the normal to the plane of the orbit. 

In view of the Importance of this solution for creation of 

systems of passive gravitational stabilization (D. Ye. Okhotslmskly, 

1963; V. A. Sarychev. 1963), the analysis of motion In an environment 

of relative equilibrium Is the subject of many works. 

V. V. Beletskly (1959) has proven that for stability of relative 

equilibrium In circular orbit it Is sufficiently that In relative 

equilibrium the major axis of the ellipsoid of Inertia of the satellite 

Is directed according to the radius-vector of orbit, the minor axis 

of the ellipsoid of energy according to the normal to the plane of 

orbit and, consequently, the average axis according to the tangent 

to the orbit. 

The problem of satellite motion around the center of masses is 

usually considered in a limited formulation:  it is considered that 

motion around the center of masses does not affect the orbit of the 

satellite.  In a limited problem the equations of satellite motion 

in the gravitational field allow the first intergal - an Integral of 

the Yakbl type which exists only in circular orbit and can be recorded 

in the following form (V. V. Beletskly, 1959); 

r* +u«KB-^)P'+(fi-c)n=*.- c6-1) 

Here  U is  the  angular velocity  of the  motion  of the  center  of masses 

of the  satellite;  p.   q,  and ? are  components  of the  relative  angular 

velocity  of the  satellite  along its  main  central  axes   <../.*, which 

correspond to  the main  central moments  of  inertia,  A.   B,   and  C: 
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,-(!.•,),   T'-Ü«r).  P-C-«).  P'-(*-")- 

where „   is a unit vector In the direction of the radius-vector of 

the orbit, and n Is a unit vector of the normal to the plarw of the 

orbit.  In a position of relative equilibrium i ||n. * Il«r. P = ? = »■-.V = 

. T'-p-P'-0.  This motion, as follows from (6.1). is stable if 

B>A>C, (6.2) 

what exactly gives the above-indicated stable distribution of the 

main central axes of inertia of the satellite. 

Analysis of small space oscillations of a satellite in circular 

orbit (V. V. Beletskiy. 1959) showed that, besides the shown sufficient 

condition of stability, there is a region of values of moments of 

inertia, in which necessary conditions of stability are fulfilled 

(motion is stable in linear approximation).  In this region the 

ellipsoid of inertia Is close to an oblate spheroid located in 

relative equilibrium by its least axis according to the tangent, 

and by the biggest axis according to the normal to the plane of the 

orbit; average axis, close in value to the biggest axis, is located 

according to the radius-vector of the orbit. 

In elliptic orbit relative equilibrium does not exist, but 

an analogous important role is played by stable periodical oscillations 

near the direction of the radius-vector of the orbit.  In special 

detail are investigated oscillations in the plane of the orbit 

described by the equation (V. V. Beletskiy. 1959) 

{l+«eMv)«'-2«8inv6'+»,»in«-4«»in» (6.3) 

(»-26.  B.-
8-^), 

where cos 6 = fc-«,: an Independent variable Is true anomaly v(. is 

orbit eccentricity).  Application of asymptotic methods to analysis 

of this equation permits obtaining Integral curves describing 

motion in an amplitude-phase plane (F. L. Chernous'ko. 1963; 

V. V. Beletskiy. 1965), playing in analysis of nonautonomous 
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oscillations a role analogous to the role of a phase plane for a 

conservative autonomous system.  For example, at small e the solution 

of equation (6.3) in the neighborhood of the main resonance is in 

quasi-harmonic form: 

«=«(V)CO»[V + H(V)1. ^6 4) 

where the variables of amplitude «(v) and phase x(v) of oscillations are 

connected by integral 

4« 
^T««lnK+ll[x-

/•(,,) + 1]""T■ = C0,,st• (6-5) 

which allows investigating motion in an amplitude-phase plane (a, K). 

In (6.5) /»(o) is a Bessel function of zero order.  The 211-periodical 

solutions of equation (6.3) correspond to stationary points of 

Integral curves (6.5), in which 

«-i.iinv,  »»«-i^I., (6.6) 

where 7, (a) Is a Bessel function of the first kind of the first order. 

The 2«-periodical solutions will be one (stable) or three (two of 

them stable, one unstable). If 

jB«-(.|)
,/,<iy>0  or O<0 (6-7) 

(V. V. Beletskly, 1965).  F. L. Chernous'ko (1963) examined an 

asymptotic solution of equation (6.3) both at low e, and at any e, 

but low n«.  In the latter case Is revealed. In particular, replace- 

ment of the stability of a 23i-periodlcal solution at <>0,682, 

when the solution responding to ns<0 becomes stable; moreover. In 

the perigee the axis of the least moment of inertia Is directed 

according to the tangent to the orbit.  If however, e<0,882, then 

the periodical solution with which in the perigee the axis of the 

motion of inertia is directed according to the radius-vector <ii1>0) 

Is stable. 
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In general analysis of periodical solutions of the equation of 

flans oscillations In elliptic orbit was made by numerical methods, 

•vhlch permitted obtaining a complete picture of regions of existence 

3f stable periodical oscillations at any value of eccentricity of 

elliptic orbit and any moments of inertia of satellite 

(V. A. Zlatoustov, 1964; D. Ye. Okhotslmskiy, 1964; V. A. Sarychev, 

1964; A. P. Torzhevskiy, 1964).  Investigation of the equation of 

plane oscillations in elliptic orbit is the subject also of a work 

of V. V. Beletskiy (1963), I. D. Killya (1963-1964) and 

A. P. Torzhevskly (1964). 

If the satellite possesses dynamic symmetry, then in 

circular orbit exist such motions (regular precessions with respect 

to the normal to the plane of orbit), when the axis of symmetry 

remains fixed in a rotating orbital system of coordinates.  The axis 

of symmetry is normal either to the radius-vector of ttu orbit or to 

the velocity vector and composes a constant (in particular, zero) 

angle with the normal to the plane of orbit. 

These stationary motions, discovered by G. N. Duboshin (1959- 

1960) and V. T. Kondurar' (1959), were Investigated for stability by 

F. L. Chernous'ko (1954), who found a region of sufficient conditions 

of stability and a region of necessary conditions of stability. 

A. P. Markeyev (1965, 1967), using the results of A. N. Kolmogorov 

and V. I. Arnol'da about stability of motion in canonical systems 

showed that in the region of necessary conditions of stability motion 

is stable everywhere, except, perhaps, a set of value of parameter 

having zero ipeasure. 

Application of asymptotic and numerical methods permitted 

A. P. Markeyev to investigate in detail motion in the vicinity of 

shown stationary motions both in circular and in elliptic orbits. 

V. A. Sarychev (1965) obtained conditions of asymptotic stability of 

stationary motions of a symmetric statelllte equipped with a damping 

device. 
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6.4. Stabilization and libratlonal motion of a satellite under 

the Impact of moments of forces of a nonRravltatlonal nature. 

Aerodynamic forces can either perturb gravitational stabilization or 

to promote It.  Of fundamental interest Is purely aerodynamic 

stabilization according to the velocity vector of the center of masses 

of the satellite.  The moments of forces of light pressure can 

stabilize the satellite with respect to the direction to the sun, 

and moments of magnetic forces with respect to the vector of the 

magnetic field strength of earth.  Also of interest is the question 

of magnetic disturbances of gravitational stabilization, Joint 

influence of moments of forces of light pressure and gravitational 

forces, etc.  Libratlonal motion under the Impact of moment of forces 

of a nongravitational nature was studied by 0. V. Gurko and 

L. I. Siabkly (1963), A. A. Karymov (1962, 19614), V. A. Sarychev 

(1961), V. V. Beletskiy (1965), A. A. Khentov (1967) and others. 

6.5. Rotary motion.  If the moments of acting forces have a 

force function, then the first approximation to the motion (in the 

asymptotic sense) Is obtained by averaging the force function accord- 

ing to undisturbed motion, and also, perhaps, according to the orbital 

motion of the satellite.  The satellite accomplishes undisturbed 

Euler-Poinsot motion relative to an angular momentum vector constant 

in magnitude; motion of the angular momentum vector itself is 

described by two canonical equations (V. V. Beletskiy, 1963); 

_*._      «    W *»_   !    a (C     CM 
17 £,aiiip ao '       *v      Losiop  ap Ko.o) 

Here £0 is the modulus of the vector of angular momentum, constant in 

the -ixamined approximation; p, and o are two angles determining the 

position of the vector X of angular momentum in fixed system of 

coordinates; V =*ü (* 4  Is the average value of the force function. 

From (6.8) It is obvious that trajectories of the vector of angular 

momentum are determined by the integral of equations (6.8) 

i7(p,o).-= const. (6-9) 
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If the .oroe function Is averaged only for Euler motion, then 

In equations (6.8) U  depends still on true anomaly '. integral 

(6.9) does not exist, but motion f,   is determined by (6.8) In more 

exact form, where for a number of Important cases equations (6.8) 

with O'-■ ü{p, a, \)   can be accurately Integrated (V. V. Beletskly, 

1963, 1965).  Thus, for example, in case of gravitational disturbances 

the vector of angular momentum accomplishes slow precession 

around the normal to the plane of the orbit at almost constant angular 

distance from it (V. V. Beletskly, 1958, 1963, 1965; 

F. L. Chernous'ko, 1963)-  If the satellite possesses dynamic 

symmetry, then 

•»-*• -y-T-.^O-I^Hp.. (6.10) 

where here p is the angle between i and »•. ff is the angle of 

rotation X around n, «•• is the frequency of revolution of the center 

of masses of the satellite along the orbit, ♦ = ♦, is the constant 
nutation angle (between L  and the axis of symmetry it   of the 

satellite). With respect to the L   the dynamically symmetrical 

satellite accomplishes regular precession. 

The described picture of motion corresponds only to nonreso- 

nance cases.  If however, between characteristic frequencitj of 

motion is a relationship close to resonance, then the picture is 

complicated and in the first approximation appear disturbances in the 

motion of the vector of angular momentum, in the magnitude this vector 

and In motion with respect to the vector of angular momentum, as 

discovered by A. P. Torzhevskly (1967) for the case of gravitational 

distruba/ices.  For example, in the case of fast rotation of s body 

with a triaxial ellipsoid of Inertia during commensurablllty of the 

two main Euler frequencies of undisturbed motion, it turns out that 

the vector of angular momentum i precesses around the normal to the 

plane of the orbit (analogously the nonresonance case) and, further- 

more, accomplishes nutatlonal oscillations (by angle p) relative to 

the normal to the plane of the orbit; during these oscillations L 

and p change so that 
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X. cw p-const. (6.11) 

V. V. Beletskly (1958, 1961, 1963, 196b, 1967) investigated 

rotary motion of a satellite under separate and Joint influence of 

forces of a different nature - gravitational, aerodynamic, magnetic, 

light pressure, disslpative forces (aerodynamic friction, eddy 

currents In the shell of the satellite); the influence of the 

variability of the orbit of the satellite and other factors was 

examined. 

Let us note certain main effects of rotary motion, making 

the simplest assumptions about the structure of perturbing moments for 

a dynamically summetrlc satellite.  Aerodynamic disturbances cause 

precession X at a constant angular distance « from the direction 

parallel to the vector P. of the speed of the center of masses of 

the satellite In the perigee of the orbit. The speed of precession 

shown Is 

A   Prt,  r    A   //    ' t-f («^«»v)V"-'*+2,cwvJ^ If.    l?) «.^.„y.eosO  (A = ärJ^    (iMc-v)«    avJ-      ^•12) 

Here e, = F,Ä, is the constant of areas of orbital motion <ft«ls the 

perlgean radius of the orbit),  p is the current density of the 

atmosphere, «. is the density of the atmosphere in the perigee of 

the orbit, « = o5/ is the coefficient of aerodynamic moment 

proportional to the product of the characteristic area of the 

satellite S   and its characteristic dimension li 

Through the action of constant axial magnetic moment I,    of 
the satellite, vector L  preoesses with a speed of iXafcv at a 

constant angular distance K   from the pole, the direction to which is 

the angle p. with the direction of the axis of earth and Is contained 

in a plane normal to the nodal line.  Given this, 

ctgp1 = |f^ir.2.      *-=^oü*   co3»Kl + 3cosM. t6-^) 
•Kl      3 sin i cos i dv       2pcnLa 

where p    is the focal parameter of the orbit,  j is the orbital 

inclination to the equator,  I>B is the magnetic moment of the magnetic 
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field of earth (assumed dipole and coaxial with the axis of earth). 

Mutlon relative to vector L   Is not destroyed.  In particular, in 

(6.12)-(6.13) nutation angle d = 00 Is constant. 

Analysis of experimental data has shown that effects of type 

(6.10) and (6.12)-(6.13) dominated for the third Soviet satellite 

(V. V. Beletskly, 1961, 1965; Yu. V. Zonov, 1961) and the "Electron- 

2 satellite (E. K. Lavrovskly, 1967; S. I. Trushln, 196?) and 

others. 

During nonconservatlve Influences Is destroyed also motion with 

respect to L.     Thus, panels of solar batteries skew-symmetrically 

Installed on the satellite create In a flow of rarefied gas a 

propelling moment untwisting the satellite and causing a number of 

other effects.  The model of such motion on the average possesses 

the property of preserving values 

L «in* (ctg *)"=!,,  (tg2ft)2acos6siii14.:-c(. (6.14) 

The constant coefficient a< 0.5 depends on the aerodynamic properties 

of the satellite.  Integral curves (6.14) permit showing that the 

satellite can (in a long period) sharply change the state of motion, 

emerging from conditions of twist (d «0) to conditions of tumble 

(6»n/2) and back.  Together with this is changed angle ft, between 

vector L   and direction F« and the value of modulus L  oscillates. 

Such effects, as analysis of experimental data ahows, dominate in 

the motion of satellites of the "Proton" type (V. V. Beletskly, 

1967; V. V. Golubkov, 1967; I. G. Khatskevich, 1967). 

/ 
Disslpatlve effects along with damping of angular velocities 

lead as a rule, in the limit tc rotation of the satellite around the 

axis of the greatest moment of Inertia (so that the stretched satellite 

is overturned, and the compressed one is stabilized). 

The influence of triaxiallty of the ellipsoid of inertia of 

the satellite on its rotary nonresonance motion is investigated for 
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gravitational moments by F. L. Chernous-ko (1963) and for aerodynamic 

moments by Yu. G. Yevtushenko (1964-1965) (by averaging of equations 

on Euler motion on the basis of a scheme proposed by 

P. L. Chernous'ko). 

A number of effects of rotary motion was revealed by Yu. V. Zonov 

(1959) (eddy currents) and A. A. Karymov (1962, 1964) (llgh 

pressure). 

A description of certain basic effects of rotary motion of the 

satellite Is contained In a book of A. I. Lur'ye (1962) and for 

L. I. Sedov (1958). 

6.6.  The influence of moments of forces of Internal nature 

on satellite motion.  N. N. Kolesnlkov (1962) showed that conditions 

of stability of relative equilibrium of a satellite as a solid body 

preserve their form also for a satellite having a cavity wholly 
filled with viscous liquid.  He examined certain satellite problems 

In the presence of gyrostatlc moment (196'  1966). 

F. L. Chernous'ko (1965-1966) Investigated in detail the 

problem of motion of a body with a cavity filled with viscous liquid, 

at low or, conversely, at high Reynolds numbers.  This problem was 

examined also in works of B. N. Rumyantsev (1964), 
P. S. Krasnoshchekov (1963) and others.  Such an investigation may 

also be applicable to analysis of satellite motion. 

Let us assume that, for example, «.satellite contains a 

spheric cavity of radius a filled with viscous liquid with density 

p. and viscosity v, and moment of external forces is absent.  Then 

at low Reynolds numbers Euler equations of satellite motion have 

the form (F. L. Chernous'ko, 1965) 

A± + (C-B)qr = 

^Mlep[C(A-C)(A + C--B)r* + B(A-B){A + B--C)<i'\, (6.Joi 
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where two other equations are obtained by cyclic permutation of the 

letters 4, ib,rC, p, c, r (here I« ^ 307"*')•  By virtue of equations (6.15) 

the value £ of the vector of angular momentum Is preserved, and 

kinetic energy T   monotonlcally decreases.  The satellite tends 

toward rotation around the axis of maximum moment of inertia.  In 

the case of a lynamlcally symmetric satellite the characteristic time 

of the transition process Is 

r,***HM-<M ■ (6.16) 

V. N. Borovenko (1965) and B. A. Smol'nikov (1966) examined 

the influence on satellite motion of the rotating bodies in it. 

The latter examined motion in Euler angles relative to the total 

constant vector of angular momentum L  of the body and flywheels; 

the trajectory of the total vector of angular momentum relative to 

the main central axes of inertia of the body is given by the Integral 

of energy of motion 

+ 2Älsinvi»inAcos(q) —|i«) + cosv,co»*| = con«l,       (6 .17 ) 

where f. and ♦ are Euler angles of normal rotation and nutation, 

but v# and |«« are angles determining the position in the body of 

angular momentum of flywheels constant with respect to the body, 

and Ä is determined by the value of this angular momentum. 

Use of rotating masses for introduction of a satellite to 

conditions of passive stabilization (V. A. Sarychev, 1967) has 

essential applied value. Analysis of the influence of elasticity of 

construction of a satellite on its motion is the subject of a work 

of V. I. Popov (1965), V. Yu. Rutkovskly (1965), and 

T. V. Kharitonovoy (1966). 

6.7.  On interconnection of translational and rotary motions. 

Motion with respecto to the center of masses and motion of the 

center of masses Itself, generally speaking are Interconnected.  It 
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is clear, for example, that the orbit of a nonspherlcal satellite 

depends due to atmospheric drag on the orientation of the satellite; 

on the other hand, change of orientation depends on orbit parameters. 

Certain questions of Interconnection of rotary and orbital motion of 

a satellite In atmosphere were examined by Yu. G. Yevtushenko 

(1965); V. V. Beletskly (1965) defined the idea of effective drag 

coefficient, which permits taking into consideration the influence 

of evolution of rotation of the satellite on its orbital motion. 

An especially large number of works is dedicated to analysis 

of interconnection of translatlonal and rotary motion of a satellite 

in a gravitational field.  Here one should note a large cycle of 

works of V. T. Kondurar' (1959-1963) and works of G. N. Duboshin 

(1958-1960), In which, in particular, are given general equations 

of translational-rotational motion of many gravitating bodies.  A 

number of effects of interconnection of translatlonal and rotary 

motion in a gravitational field is examined in the works of 

V. V. Beletskly (1959, 1963, 1965). M. S. Volkov (1962-1963) and 

others. 

6.8.  Determination of actual orientation of satellites 

according to measurements.  Readings of various sensors on the 

satellite permit obtaining information about actual satellite 

orientation and about actual moments of forces acting on it.  For 

this purpose readings of magnetometers are used, sun sensors, and 

sensors of angular velocities; and ion traps; data on modulation of 

radio signal, etc. 

Since measurements are taken with certain errors, the natural 

approach to determination of orientation Is satlstlcal treatment of 

measurements.  If at a fixed Instant a sufficient quantity of 

various measurements is necessary, then this permits determining 

orientation by the local method without knowing anything beforehand 

about the motion of the satellite near the center of the masses. 

But usually a sufficient quantity of measurements is dispersed over 

a considerable Interval of time.  In this case orientation can be 
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determined only by the Integral method, using the whole sum of 

Information for construction of any model of motion.  In connection 

with this the role of models of motion of a satellite near the 

center of masses Is Important.  As such a model It Is possible to take 

undisturbed motion, differential equations of motion, etc. 

Algorithms of statistical data processing are usually Iterative. 

Therefore, a large role Is played by methods of obtaining zero 

approximation to satellite motion.  This zero approximation Is usually 

obtained from the same Information which Is later used In statistical 

treatment.  In parallel with determination of orientation Is possible 

determination of moments of forces acting rn the satellite. 

Development of methods of determination of orientation and determina- 

tion of orientation of a number of Soviet artificial satellites are 

the subjects of a work of V. V. Beletskly (1961, 1965, 1967), 

V. N. Borovenko (1967), Yu. V. Zonov (1961), V. V. Golubkov (19t.'7), 

I. G. Khatskevlch (1967) and others, among which we will note works 

dedicated to determination of certain parameters of rotation and 

orientation of satellites according to optical observations for 

change of their brightness (V. M. Grlgorevskly, 1961, 1963). 

6.9. Books and monographs.  To questions of motion of a 

satellite around the center of masses Is dedicated a book of 

V. V. Beletskly which appeared In 1965. Individual problems of 

dynamics of satellite rotation are examined also In books of 

K. G. Bebenln (196^), A. I. Lur'ye (1962), N. N. Molseyev and 

V. V. Rumyantsev (1965). 

6.^0. Remark.  In the present paragraph no mention Is ever 

made of important questions of dynamics of guided motion of a 

satellite around the center of masses (or of passive stabilization 

of satellites, which is the subject of the next paragraph). Some 

work on these subjects was carried out by K. G. Bebenln (196')), 

M. Z. Borshchevskiy (1966), E. V. Gaushus (1963), I. V. loslovich 

(1966), V. P. Legostayev (1966), D. Ye. Okhotslmskiy (1963), 

B. V. Raushenbakh (I960, 1966), V. A. Sarychev (1963-1964, 1967), 

B. A. Smol'nikov (1964), and Ye. N. Tokar' (I960). 
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§ 7.  Passive Methods of Stabilization 
of Artificial SateiifEes 

One Important trend In the technology of space flights is 

creation of oriented artificial earth satellites. Solution of 

this problem permits carrying out scientific experiments requiring 

orientation In Interplanetary space, return to earth of the satellite 

or holder with the results of these experiments, creation of a 

system of relay satellites utilized for purposes of global radio 

communications and television, launching of meteorological and 

geodetic satellites and others. Depending upon the problem at hand 

orientation of an artificial satellite can be carried out with the 

use of active or passive methods. 

For active methods of orientation is necessary the presence 

on a satellite of orientation sensors and action elements ensuring 

controlling moments and supporting assigned orientation of the 

satellite in space.  Active systems of orientation are used if it 

is necessary:  1) to ensure very high accuracy of orientation, 

2) to counteract large perturbing moments, 3)  and to accomplish a 

complex program of turns around the center of masses of the satellite, 

Active systems of orientation require considerable consumption of 

power and (or) working substance and, as a rule, are Intended for 

a comparatively short time of work. 

For projects of satellites without complex program maneuvers, 

with a long time of existence and accuracy of orientation of the 

order of 1-5 application of passive systems of stabilization of 

satellites, it is possible to use the properties of gravitational 

and magnetic fields, the effect of atmospheric drag and light 

pressure, gyroscopic properties of revolving bodies and others. 

7.1. Systems of gravitational stabilization. Of systems using 

environment properties the most popular are systems of gravitational 

stabilization of satellites. The principle of stabilization in 
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these systems 's based on the following, well-known property of a 

central Newtonian field of forces: a satellite with unequal main 

central moments of Inertia has in circular orbit four stable positions 

oi" equilibrium corresponding to the coincidence of the biggest axis 

of the ellipsoid of Inertia of the satellite with the radius-vector 

and the least axis with the binormal to the axis. 

Strict proof of the stability of positions of satellite 

equilibrium based on use of the second method of I^yapunov was given 

by V, V. Beletskiy (1959). In reference to the moon, which is an 

example of natural gravitational stabilization of a body relative 

to an attracting center, necessary conditions of stability of 

equilibrium positions were obtained in classical celestial mechanics 

by Zh. L. Lagranzh. 

During practical realization of these ideas in systems of 

gravitational stabilization of satellites appear certain difficulties. 

The first difficulty is connected with the necessity of damping 

natural satellite oscillations with respect to the position of 

stable equilibrium. To ensure damping of natural oscillations the 

satellite is fulfilled in the form of two parts united by nonrlgid 

connection — satellite and stabilizer. Damping is introduced into 

the system with use of relative mobility of satellite and stabilizer. 

The construction of the suspension connecting the satellite with 

the stabilizer is the most complex element of the system of gravita- 

tional stabilization. 

A  second difficulty appears because of ambiguity of the position 

of stable equilibrium of the satellite. If the satellite after 

damping of natural oscillations should occupy an assigned stable 

equilibrium position, and angles and angular velocities of the 

satellite in initial moment after separation from the last stage 

of the carrier rocket are too great, then they must be decreased 

with the help of a system of preliminary calming values excluding 

transition of the satellite from one stable position of equilibrium 

to another. Another solution of the problem is to calm down the 

satellite in any equilibrium position and already after calming to 

uransfer it with the help of a program turn to assigned equilibrium 
position. 
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A third difficulty is caused by a low value of gravitational 

turning points and the necessity in connection with this of taking 

special steps to decrease different perturbing influences in order 

to ensure high enough accuracy of satellite orientation. 

The first scheme of a system of gravitational stabilization 

of artificial satellites was proposed in 1956 by D, Ye. OkhotslmsiUy 

(1963).  In this scheme to the body of the satellite with the help 

of a ball Joint is Joined a stabilizer carried out in the form of 

two rods Identical in length rigidly fastened with each other 

with equal loads on the ends. The position of the stabilizer with 

respect to body of the satellite is fixed by centering springs. 

The parameters of the stabilizer (length of rods, weight, angle of 

opening between rods) are selected in such a way as to ensure the 

necessary parameters of the ellipsoid of Inertia of the satellite- 

stabilizer system. Relative motion of satellite and stabilizer 

is used for introduction in system of linear damping members. 

During Investigation of the dynamics of this scheme of a system 

of gravitational stabilization V. A. Sarychev (I96I; 3963) obtained 

the necessary and sufficient conditions of asymptotic stability of 

the position of equilibrium of the satellite-stabilizer system. 

Investigated forced oscillations of a system in elliptic orbit and 

examined the possibility of decreasing the duration of the transition 

process during extinguishing of natural satellite oscillations. 

The necessary and sufficient conditions of asymptotic stability 

of the position of equilibrium of the satellite-stabilizer system 

are comparatively easily obtained in general form by plotting the 

Lyapunov function, the role of which is fulfilled by the Hamiltonlan 

function of the system.  The only difficulty is connected with the 

fact that the derivative from the Lyapunov function by virtue of 

equations of motion is only a fixed, and not a definite function; 

therefore, the theorem of the second method of Lyapunov cannot be 

used In this case without additional investigation. 
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Necessary and  sufficient conditions of asymptotic  stability 
of equilibrium position  lead  to the following requirements: 

1) in the equilibrium position the satellite-stabilizer system 
should be gravltatlonally stable.  I.e.,   the axis of the least 
moment of inertia of the whole system should coincide with the 
radium-vector, and axis of the greatest moment of inertia with the 
binormal to the orbit. 

2) the values of moments  of forces of elasticity counteracting 
the destabilizing gravitational moments have to be  limited from 

below; 

5)    at no values of the parameters should  the derivative from 
the Hamlltonian function of the system Identically turn into zero, 
which signifies the absence of such solutions, when the satellite- 
stabilizer system accomplishes oscillations as a solid body without 
energy dissipation. 

Depending upon the construction of the satellite-stabilizer 
system and the altitude of orbit can appear the necessity of 
calculation of atmospheric drag.    The influence of drag on circular 
orbit bolls down to change of satellite equiligrium and appearance 
of  forced  oscillations with respect to angle of roll and yaw.    By 
selection of the scheme  (V. A.  Sarychev,   1961)  it is possible to 
leave constant the position of equilibrium and  to use reducing 
aerodynamic moments with respect to angles of yaw and pitch for 
weakening of requirements made on the relationships between the 
momenta of inertia of the system. 

Neceesary and sufficient conditions of asymptotic stability 
of natural oscillations of a system in circular orbit, taking into 
account atmospheric drag, are obtained by plotting the Lyapunov 
function.    The stability of the satelllte-stablliter system In roll 
as before Is determined only by gravitational moment,  It becomes 
possible to ensure (or to strengthen) stability  In pitch and yaw 
by aerodynamic moment. 



Due to the rotation öf the atmosphere together with the earth 

with respect to angles of yaw and roll appear forced oscillations 

with a frequency equal to the frequency of revolution of the center 

of masses of the system along the orbit. The amplitude of these 

oscillations Is proportional to the angular velocity of rotation 

of the earth and the sine of the angle of Inclination of the orbit. 

It Is necessary to note that in principle the influence of 

atmospheric drag on oscillations of the satellite-stabilizer system 

can be excluded by selection of stabilizer parameters. 

During derivation of the equations of motion of a satellite- 

stabilizer system with a suspension with three degrees of freedom 

It was clarified that small oscillations of the system by angle of 

pitch (in the plane of the orbit) do not depend on angles of roll 

and yaw, when oscillation with respect to angle of roll and yaw 

are interconnected and do not depend on pitch angle. This fact 

permitted transferring In construction of the satellite-stabilizer 

system to a suspension with two degrees of freedom, but then, 

having become free from the symmetry of a scheme leading to Independence 

of oscillations in the plane of the orbit because of angles of roll 

and yaw, to suspension with one degree of freedom (V. A. Sarychev, 

1964). Asymptotic stability of the equilibrium position of the 

system with respect to all angular variables can be ensured, In 

spite of partial dissipation. Decrease of the number of degrees 

of freedom of the suspension permits considerably simplifying the 

construction of the satellite-stabilizer system. 

In circular orbit in a medium without drag natural oscillation 

fade with the passage of time and the satellite-stabilizer system 

transfers to a position of stable equilibrium.  In elliptic orbit 

there is no equilibrium condition. The system accomplishes In the 

plane of orbit forced (eccentric) oscillations caused by Irregularity 

of rotation of the orbital system of coordinate!. The amplitude of 

eccentricity oscillations Is proportional to the value of the 

••ccentrlolty of the orbit ar.l Intend» on the Inenlal ch«r«cterlatlc» 



of the system and the coefficients of friction and elasticity 

(V. A. Sarychev, 1961, 1965).  In the absence of friction In the 

system It Is possible so to select the parameters of the stabilizer 

that in elliptic orbit the amplitude of eccentricity oscillations 

of the satellite will be equal to zero. In this case the stabilizer 

plays the role of a dynamic damper of oscillations. Eccentricity 

oscillations are easily calculated and can be considered during 

treatment of results of experiments conducted on the satellite. 

Errors of the system of gravitational stabilization (V. A. Sarychev, 

1961) are determined by errors of system manufacture and external 
perturbing moments. Appearance of errors of manufacture are caused 

by the following circumstances: 

1) error in determination of center of masses, 

2) error in determination of directions of main dynamic 

axes, 

3) error in reckoning zero of moments of elastic forces. 

These errors randomly affect system parameters. During investigation 

of accuracy of satellite stabilization, of the highest Interest are 

deviations of parameters from the selected nominal values which 

lead to a nonunlform system of differential equations of motion. 

Slight deviations of parameters not changing the uniform form of 

equations of motion can only insignificantly change the transition 

process and the characteristics of steady motion in elliptic orbit. 

It is possible comparatively simply to obtain evident analytic 

dependences connecting accuracy of satellite stablllfatlon with 

errors of system n»nuf*cture. Analysis of these dependences shows 

that In weakly elliptic orbits static errors are basic. The 

amplitude of periodic errors determined by elllptlclty of orbit has 

a higher order of samllness. 
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Basic external perturbing moments,  the  influence of which 
must be taken into account  in evaluating the accuracy of systems of 
gravitational stabilization,  are caused by atmospheric  drag,  the 
magnetic  field  of earth,  elliptlcity of orbit,   light pressure,   etc. 
The action of these moments  leads to disturbance of the position 
of equilibrium of the  system and appearance  of  forced oscillations, 
the amplitude  of which is determined by the value of disturbances. 

The dynamics and accuracy of systems of gravitational stabilization 
are essentially  Influenced also by effects  connected with nonrlgidness 
of elements  of satellite  construction  (V.  I.  Popov,   1965; 
V. Yu. Rutkovskiy,  1965;  T. V.  Kharitonov,   1966),  especially if one 
considers that the  length of a rod with a load at the end utilized 
to ensure  the necessary reducing gravitational moments  can reach 

tens  of meters. 

Different  systems  of gravitational stabilization of artificial 
satellites differ basically in methods of damping of natural 
oscillations.    Damping can be completely passive,   semlpasslve and 

active. 

In purely passive  circuits  (D.  Ye.  Okhotsimskly,   1963; 
V.  A.  Sarychev,   1963) with  the use  of relative motion of nonrigldly 
connected satellite parts  is introduced  linear damping.     Practical 
realization of  linear damping is  possible,   for example.   In the  form 
of a magnetic damper the action of which is based on the use of 
eddy currents,  a  liquid  damper,  etc. 

An example of a semlpasslve damping circuit   (Ye. N. Tokar', 
1966;   V.  A.  Sarychev,   196')  Is a gyrodamper consisting of a pair 
of two-axis gyroacopes,   the axis of rotation of rotors of which In 
the equilibrium position of the satellite are   located symmetrically 
with respect to the normal  to the plane of the  orbit.    Natural 
oscillations of the satellite cause precession of rotors of gyroscopes 
connecteJ with the dampln« device,   that  leads  to energy dissipation 
of the system.     In a semljasslve circuit comparatively  low energy 
content   Is expanded only keepliif-  the speed of rotation of the  rotors of 

•he >*:'•orfcopes constant. 
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In systems  of gravitational stabilization with active damping 
the extinguishing of natural satellite oscillations relative to the 
orbital system of coordinates Is carried out with help of an active 
system,  including sensitive and action elements, and only turning 
points are ensured through the properties of the gravitational 
field of earth. 

The theory of systems of gravitational stabilization of     J 

artificial satellites Is developed in reference to earth as to an 
attracting center.    However, all the  basic  results  (conditions of 
stability,  eccentricity oscillations, duration of transition process, 
expressed  in number of revolutions  of the  satellite along the  orbit 
and so forth) are preserved for the moon and the planets of the solar 
system.    The difference appears only in evaluating the Influence of 
perturbing moments and calculation of conditions specific for a 
concrete planet  (for example, practical absence of magnetic field 
for the moon). 

7.2.    Systems of aerodynamic stabilization.    In circular and 
weakly elliptic orbits In the range of altitudes from 250 to 
350 km for orientation of the axis of symmetry of a satellite with 
respect to incident flow,  the direction of which differs  little 
from the direction of the tangent to the orbit,  It is possible to 
us« aerodynamic moments.    If the satellite is aerodynamic«lly stable, 
then with the disturbance of normal orientation appear turning points 
in pitch and yaw tending to combine the longitudinal axis of the 
satellite with the velocity vector of leading flow.    For removal 
of uncertainty of turn of satellite In roll («round the longitudinal 
axis) It Is possible,  for example,  to place In the body of the 
satellite a rotor rotating with constant angular velocity around 
an axis perpendicular to the axis of symmetry of the satellite, 
jyroscoplc moments appearing during rotation of the rotor tend to 

advance the axis of the rotor with respect to the normal to the 
plan« of the orbit. 

An example of « setelllte with «n aerodynamic to be (to be more 
ex«ct, terodyroscoplc)  system of stabilization Is the "Kosmos-149," 
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satellite  launched  21 March 1967 into an orbit with an altitude of 
perigee of 248 km and an altitude of apogee  of 297 km    and an 
inclination of the plane  of the  orbit to the  plane  of the equator 
of 48°  (A.  M,  Obukhov,   1967;  V.  K.  Mikhaylov,   1967;   V. A,  Sarychev, 
1967;   L.  V.  Sokolov,   1967).    To ensure sufficient  reducing aerodynamic 
moments  in pitch and yaw,   to the  satellite on four long thin rods 
is attached an aerodynamic  stabilizer constituting the lateral 
surface of the frustum of a cone. 

Roll stabilization  is ensured with the help of two two-axis 
gyroscopes on the satellite.    Their total angular momentum with 
normal satellite orientation is perpendicular to the plane of the 
orbit.     The  location of  the gyroscopes are  such  that with any 
disturbance of satellite  orientation appear  reducing gyroscopic 
moments with respect to yaw and roll.    Thus,   in the examined circuit 
the  stability of the satellite  in pitch  is ensured  by aerodynamic 
moment,   in  roll by gyroscopic moment,  and  in yaw by  the combined 
action of aerodynamic and gyroscopic moments.    A satellite with 
an aerogyroscopic  system of stabilization possesses  only a stable 
position of equilibrium. 

Besides stabilization with respect  to roll and yaw gyroscopes 
ensure also damping of nature satellite oscillations.    For this 
the axes of rotors of gyroscopes are united with damping devices 
and during precision of «.vroacoj-es appearing during any disturbance 
of normal orientation of the tatelllte,  occurs dissipation of 
»nerf-y or natural oacl llat ions. 

The basic disturbance determining the accuracy of the system 
>f satellite stablliiation Is caused by entralnment of the atmosphere 
of the rotating earth,  elllpticlty of orbit and errors of manufacture 
of" construction.    Analysis of readings,  of scientific equipment 
(photometers,   three-component magnetometer)  on  the "Kosmos-Wg" 
satellite permits affirming that   the aerogyroscopic  system ensures 
satellite stabilization with respect to the  system of coordinates 
according to angles  of pitch,  yaw and  roll with a  precision of not 
less  than  5°. 



The acjtloii of solar light pressure is analogous to the action 

of atmospheric drag.  For artificial earth satellites light pressure 

is a perturbing influence.  However, for spacecraft (in particular, 

for artificial satellites of the sun) moving distantly enough from 

the earth and planets in almost circular orbits, light pressure 

can be used for purposes of stabilization of the craft on the sun. 

The idea of joint use of the gravitational field of the sun 

and its light pressure for stabilization of an artificial satellite 

of the sun has been proposed by 0. V. Gurko and L, I. Slabkiy (1963). 

They described the construction of a spacecraft which allows 

stabilizing the action of a gravitational field and light pressure 

and obtaining sufficient restoring moments at distances of up to 

4 A.U. from the sun. 

Determination of moments of forces of light pressure acting 

on a body, and analysis of stability of rotation of a geometrically 

symmetric artificial satellite in a field of forces of light pressure 

are the topics of works of A, A. Karymov (1962, 1964). 

7.3. Spin stabilization. To ensure constant orientation of 

a certain axis of a satellite In inertial space is frequently used 

a stabilization system using gyroscopic properties of rotating bodies. 

Thus, for example, it is known that stationary rotation of a 

satellite around axes corresponding to the minimum and maximum 

moments of inertia Is stable.- In the presence of dissipative moments 

only stationary rotation around an axis corresponding to the maximum 

moment of Inertia of the satellite remains stable. External moments 

caused by the gravitational and magnetic fields of earth, atmospheric 

drag, and Light pressure lead to disturbance of the orientation of 

a satellite stabilized by rotation. For the preservation of constant 

orientation of a satellite for a long enough Interval of time. 

Influence of external moments must be compensated with the help of 

a special active device, which Is switched on if the deflection of 

the axis of rotation of the satellite from the assigned direction 

exceeds the permissible value. 
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The influence of basic external moments (gravitational, 

aerod./Aataie, magnetic, light pressure, and dissipatlve) on the rotation 

of an axisymmetrlcal satellite was investigated in great detail by 

V.  V. Beletskly (1958, 1961, 1963, 1965). The evolution of the 
rotation of a satellite with a trlaxial ellipsoid of inertia under 

the Impact of gravitational moments was examined by F, L. Chernous'ko 

(1963), and under the impact of aerodynamic moments by Yu. G. Yevtushenko 

(1965). 

The basic deficiency of systems of stabilization of satellites 

by rotation Is the necessity of exact Initial exhibition of the 

axis of symmetry of the satellite in inertial space, precision 

twist of the satellite around this axis and periodic compensation 

of influence of external perturbing moments. For execution of these 
problems are necessary all elements of active systems — orientation 

sensors and actuators. The advantage of systems of spin stabilization 

as compared to active systems is essentially lower expenditure of 

energy. 

In systems of spin stabilization may also be used steady-state 

solutions for an axisymmetrlcal satellite In circular orbit obtained 

ly L N. Duboshin (1959-1960) and V. T. Kondurarem (1959). These 

solutions correspond to the rotation of a satellite with constant 

angular velocity around the axis of symmetry, keeping constant its 

position In the orbital system of coordinates. Cases are possible 

in which the axis of symmetry Is perpendicular to 

1) the plane of the orbit, 

2) the radius-vector, 

5)    the  tangent  to  the orbit. 

Tn  the   last  two cases  the orientation of the axis of symmetry 
of the satellite   In  the orbital system of coordinates  Is determined 
;;,   the  ratio of  the moments  of Inertia  of the satellite and   the 
üpeel  of rotation around   the axis  of  symmetry. 



Necessary conditions of stability of these steady-state solutions 

were obtained by G. N. Duboshin (i960), and sufficient conditions 

of stability by F. L. Chernous'ko (1964). A. P. Markeyev (1965, 

1967) on the basis of results of A. N. Kolmogorov, V. I. Arnol'd 

and Yu. Mozer proved the stability of steady-state solutions for 

almost all points of the region were only necessary conditions of 

stability are carried out. Investigated, using methods of averaging, 

nonlinear oscillations of the axis of symmetry of the satellite 

in the near-resonance region, and examined the possibility of 

appearance of parametric resonance In elliptic orbits. 

In order to ensure asymptotic stability of stationary rotations 

is necessary a damping mechanism which works only during deflection 

from stationary rotation.  Such an active damping device has been 

proposed by v. A. Sarychev (1965).  He obtained conditions of asymptotic 

stability of stationary rotations. The damping mechanism can be 

realized by purely passive means with the use of ideas proposed in 

systenuL.of gravitational stabilization (V. A. Sarychev, 1964). 

7.4. Stabilization with respect to magnetic field. For certain 

scientific experiments It can be desirable to orient the satellite 

with respect to the vector of the magnetic field strength of earth. 

For this on the satellite is rigidly braced a sufficiently strong 

magnet, interaction of which with the magnetic field of earth leads 

to appearance of moments tending to combine the axis of the magnet 

with the vector of the magnetic field strength of earth. 

The basic results according to an analysis of the systems of 

satellite stabilization with respect to the magnetic field without 

the mechanism of damping of natural oscillations were obtained by 

V. V. Beletskly (1963, 1965) and A. A, Khentov (1967).  In these 

works are Investigated forced periodic oscillations of a magnet in 

the magnetic field of earth, is estimated the perturbing influence 

of the gravitational field of earth and atmospheric drag, and are 

clarified conditions of appearance of resonance. 
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The basic deficiency of satellite stabilization with respect to the 
magnetic  field of earth is connected with the complex  character of 
steady motion  of a satellite  in a magnetic field.   Instability of 
the magnetic  field,   instability of the magnetic  field  of earth 
Itself and,  as a result, the impossibility of achieving a high 
enough accuracy of satellite orientation.     Till now systems of 
stabilization with respect to a magnetic field were used only as 
auxiliary systems of preliminary damping decreasing the amplitude 
of natural satellite  oscillations   to values which allow using as 
basic a system of gravitational stabilization. 

In  the  present  paragraph are  briefly examined works directly 
dedicated  to theories of motion of  satellites with passive systems of 
stabilizations.    Besides these works,  in the USSR is carried out a 
large number of studies in adjacent  questions.    Of them one should 
note works about oscillations  of a  satellite  (without a  system of 
stabilization)   in elliptic  orbit   (V.  V.  Beletskly,   1963; 
V. A.  Zlatoustov,   1964; D.  Ye.  Okhotsimskly,   1964;   V.  A.   Sarychev,   1964; 
A.  P.  Torzhevskiy,   1964;  F.   L.  Chernous'ko,   1963;   I.  D.   Kill', 
1963-1964),   investigations about  motion of bodies with cavities 
filled with viscous  liquid   (N.  N.   Kolesnikov,   1962;   F.   L.  Chernous'ko, 
1965-1966;   P.   S.  Krasnoshchekov,   1963;  B.   N.  Rumyantsev,   1964), 
works about  optimum (minimum consumption of working substance) 
deceleration  of rotation of a satellite  in an inertial system of 
coordinates   (B.  A.  Smol'nlkov,   1964;   M.  Z.  Borshchevskly,   1966; 
I.   V.  loslovlch,   1966-1967-),   investigations dedicated  to detecting 
all positions  of equilibrium of a  system of two bodies  united  by an 
ideal ball Joint,   ir  orbital system of coordinates and  derivation 
of sufficient  conditions of stability of these positions  of equilibrium 
(V. A.  Sarychev,   1967).    These works are exardned more  specifically 
In  § 6. 

At  present passive methods have durably entered  the arsenal of 
technical means  used  for stabilization of artificial satellites. 
These methods,  not  requiring expenditures  of working substance and 
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either not connected with expenditure of energy at all or requiring 

minimum expenditures, turn out to be very effective, when it is 

necessary to maintain a definite orientation of the satellite for 

a long period of time and accuracy of the order of a few degrees 

is sufficient. Systems of stabilization based on the use of passive 
methods usually turn out to be sufficiently easy both absolutely 

and in parts of weight of the satellite, which is especially 

essential for small satellites, including satellites Intended for 

carrying out scientific investigations. Passive methods of stabiliza- 
tion are also very effective on satellites with a long time of 

active existence, utilized for realization of TV transmissions, 

telephone and radio communications between continents, and on 

meteorological satellites.  Increase of accuracy, output to the 

range of altitudes from 500 km to dally orbits, simplification and 

Increase of reliability, and use in passive systems of stabilization 

of certain elements of active systems will lead to further expansion 
of the field of application of passive methods. 

§ 8. Optimum Correction of Flight 
Paths ot  SpacecraTE 

Development of InvestigatlonB in region of flight control of 

spacecraft is intimately connected with solution of problems facing 

contemporary space technology of exact realization of interplanetary 

trajectories.  The required high accuracy of interplanetary flights 

is determined by the tendency to create crafts able to carry out 

close approach with a selecteö celestial body at gigantic distances 
from earth. 

The need to ensure accuracy of realization of space trajectories 
exceeding by several orders its terrestrial equivalents produced the 

necessity of creation of additional systems on board a spaceship 

which allow correcting orbit in the process of flight. A complexity 

of creation of similar systems is that they can be built only on 

the basis of elements of ordinary accuracy. Correctional devices 
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have to be included (at least the last time) In points of trajectory 

in which the influence of errors of the correction system on 

corrected orbit parameters does not exceed the permissible level. 

Inasmuch as among correction errors there are power errors, the 

formulated requirement means that for correction points of low 

effectiveness of correction have to be used which can be connected 

with additional expenditures of fuel. Therefore, to decrease the 

weight of auxiliary spacecraft systems in many cases it is necessary 

to conduct a thorough Investigation of different properties of 

motion for the purpose of finding optimum solutions during construction 

of flight control systems of spacecraft.  The theory of correction 

of spacecraft orbits developed in the last decade Is one of the 

divisions of contemporary astrodynamics and the theory of automatic 

control. The basic problems of the theory of correction of 

parameters of spacecraft motion are formulated in a work of 

a. N. Duboshin and D. Ye. Okhotsimskly (1963). 

The complexity of the problem of correction is determined by 

the need to minimize the value of total fuel consumption or, what 

is the same for systems with limited exit velocity of stream, the 

total characteristic speed of correction in the presence of random 

errors of determination of orbit and knowingly non-Gaussian errors 

of performance of correcting maneuvers under conditions. In general, 

dropping effectiveness of correction with the passage of time. 

Therefore, if the correction is made late enough, a correcting pulse 

and considerable additional weight oi board the spacecraft can be 

required. Early correction can be more economical; however, insufficient 

accuracy of determination of orbit parameters by the moment of its 

fulfillment can lead to insufficient accuracy of correction and to 

the necessity of its repeated fulfillment. 

The problem of correction can be divided in to three Independent 

problems. These problems Include 1) the problem of determination 

of orbits of spacecraft according to optical and radio observations, 

2) the problem of detecting the most effective conditions of 

correction of the obtained orbit, and 3) the problem of the most 

rational distribution of measurements and correctional acts on 

trajectory. 

65 



The second problem can be solved independently of the first. 

Regarding the third problem, it can be solved independently of the 

first two only with certain simplifying assumptions.  Leaving aside 

questions of determination of orbits, we will give a short survey 

of basic result attained at present in the theory of correction of 

flight of spacecraft within the bounds of the last two problems. 

Initially the problem on correction was regarded as a problem 

of selection of a change of speed of flight which leads to hit in 

an assigned instant in an assigned point of space (see, for example, 

work of K. V. Kholshchevnikov (1965), V. M. Ponomarev (1965) or 
"Reference book on cosmonautics" (1966) based on foreign materials). 

Such a formulation of the problem permits using for calculation of 

the magnitude and direction of the correcting pulse methods of celestial 

mechanics (K, V. Kholshchevnikov). However, in reality the variety 

of required corrected parameters is considerably wider, and practically 

problems boiling down to such a formulation are absent. 

In certain works is examined a correcting change of speed causing 

an assigned change of orbit elements. Such a formulation strongly 

complicates the problem and hampers Investigation of optimum properties 

of correcting maneuvers. 

In 1959 D. Ye. Okhotsimskiy proposed regarding the correction 

problem as a problem about change of the coordinates of the point 

of crossing by the spacecraft 'of the plane of a figure of a planet. 
The plane of a figure usually means the plane passing through the 

center of the planet and oriented orthogonally to the velocity 

vector of approach of the craft with a nonattracting planet. Such 

a formulation permitted decreasing the number of corrected parameters 

of trajectory to two when the instant of approach of the spacecraft 

f with the planet is not essential and permitted considerably 
simplifying analysis of characteristics of corrections. 

In connection with small dimensions of corrected deflections 

as compared to distances between planets, the problem of correction. 
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In the  first approximation,  can be examined  In  linear formulation. 
However,   In the problem of correction Is always present a nonllnearlty 
connection of corrected parameters of trajectory with characteristics 
of motion near the planet.    The basic  source  of nonllnearlty in 
this connection is the attraction of the planet, which should be 
excluded  in  linear formulation. 

In lectures on mechanics of space flights read by 
D.  Ye.  Okhotsimskiy at Moscow University in 1961 was  given a procedure 
for eliminating nonlinear influence  of attraction of the planet on 
corrected  parameters of trajectory.     This procedure was used in a 
work of E.   L.  Akim and T.  M.  Eneyev  (1963),  and also in a work of 
A.   K.  Platonov,  A. A. Dashkov and V.  N.  Kubasov  (1965).     Exclusion of 
influence  of attraction of  the  planet  is achieved  by using,  as 
corrected  parameters,  a component  of the osculating sighting range 
at  point  of closest approach with  the  planet.    The  osculating sighting 
range  is a  small semiaxis of an osculating hyperbola  regarded as a 
vector  lying in the plane of planet-centered motion and  orthogonal 
to the  speed  of the spacecraft at an  infinitely great  distance from 
the planet within the bounds  of the  two-body problem. 

Those  or other characteristics  of approach with the  planet can 
be  simply depicted on a  similarly built aiming plane  (plane of a 
figure)   (R.   K.  Kazakov,  V.  a.   Kiselev and A.  K.  Platonov,   1967). 
lermlsslble values of change of characteristics  of approach with 
a   planet determine  in the plana  of a  figure the  region of probable 
deviations,   disregarding the attraction of the  planet.     The dimensions 
of this  region determine  the  required accuracy of realization of 
interplanetary trajectory or the  required accuracy  of  its  correction. 
The characteristics of correction  in  this case depend  on  the degree 
of  Influence  of the pulse change  of velocity vector  in some  point 
of trajectory of deviations  of coordinates  in  the plane of a  figure. 

Along with successful selection  of corrected  parameters  of great 
Importance  for  investigation of correctional properties  of  interplanetary 
orbits  is  simplicity  of analytic  expressions for the  isochronous 
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derivative of parameters of motion along the trajectory.    Very 
simple expressions  for isochronous derivatives were obtained  by 
V.  I.  Charnym (1965) as a result of study of properties of a 
linearized system of perturbation equations within the bounds of 
a two-body problem.    These investigations were continued by 
V.   G. Khoroshavtsev (1965), who examined  the problem of calculation 
of isochronous derivative parameters of motion of an artificial 
satellite for the case of long intervals of time of motion, when 
trajectory is broken up into sections,  and also by V.  N.  Kubasov  (1966), 
who obtained  the analytic  dependence of the value of the shown 
derivative on flight  time.    Obtained analytic expressions for isochronous 
derivatives permitted  considerably simplifying analysis of character- 
istics of corrections during flights to the moon and planets. 

The general properties of correctional maneuvers during inter- 
planetary flights were investigated in a work of A. K.  Platonov (19^' )■ 
He examined in linear approximation the characteristics of a 
correctional maneuver on different sections of flight path to planets. 
As correctable parameters of trajectory are used the moment and 
coordinates of the point of intersection by the spacecraft of the 
plane of a figure of the planet.    It is assumed that correction is 
made by way of instantaneous change of the velocity vector of 
flight in one or several points of trajectory and that there is 
complete information about the motion cf the spacecraft.    The 
investigation is made for the purpose of decreasing the value of 
the total correction pulse. 

Minimization of the value of correcting pulse of speed during 
single-time correction is possible,  if the number of corrected 
parameters is less than three.    For example,   in case of correction 
of two coordinates in the plane of a figure,   the pulse of minimum 
value belongs to the plane of optimum correction stretched to the 
gradients of these coordinates at the point of correction.    The 
pulse oriented along the normal to the plane of optimum correction 
does not cause in linear approximation a change of coordinates  in 
the  plane of a figure.    Therefore,  such a pulse direction can be 
called zero-direction.    The pulse along the zero-direction changes 
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only the time of flight to the planet without changing the relative 

position of the spacecraft and the planet during approach. 

Effectiveness of correction in a given point of trajectory can 

be characterized by the Influence of the totality of unit pulses 

on the coordinates in the plane of a figure.  If the direction of 

the correcting speed can be any direction, such a totality is a 

unit sphere or a unit circle in the plane of optimum correction. 

Tn the space of correcting parameters the reflection of such a 

sphere is the ellipsoid of the influence of unit pulses of correction, 

for example, the ellipse of the Influence in the plane of a figure. 

The stretched ellipse of influence indicates irregularity of 

directions In the plane of a figure from the point of view of 

correction. Deflections lying close to the direction of the major 

semlaxis of the ellipse is easier to correct than deflections, 

in the direction of its minor semlaxis. 

In a work of A. K. Platonov (1966) it Is shown that with the 

passage of flight time ellipses of influence aspire to a circle, 

the radius of which aspires to zero. For example, during flights 

to Venus and Mars ellipses of Influence are turned into circles 

approximately 15 days before approach with Venus and two months 

before approach with Mars. The radius of such a circle in every 

moment with good accuracy Is numerically equal to the time remaining 

before approach with the planet.  In the earlier stages of flight 

the ellipses of influence can differ by considerable stretchabllity, 

especially strong in points of degeneration of characteristics of 

correction. 

The orientation of the optimum correcting pulse in space Is 

connected with zero-direction orientation. It Is shown that in 

the general case of flight to planets zero-direction orientation 

Is preserved neither in absolute nor in orbital systems of 

coordinates, enduring especially sharp change In points of degeneration 

of correction characteristics.  On the last stage of flight 

zero-direction is closely to the direction to the planet. 
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Minimization of the value of the correcting pulse Is possible 

also if some parameter of trajectory does not have to be maintained 

with high accurac;, or has to be maintained with an accuracy of up 

'o a period.  A. K. Platonov examines an example of minimization 

of the value of the correcting pulse during correction of three 

parameters - two coordinates In the plane of a figure and the 

time for execution of conditions repeated every twenty-four hours 

of visibility from earth of approach of the spacecraft with the planet. 

In this case first of all one should determine the component 

of the correcting pulse in the plane of reference of optimum 

correction and Intended for correction of coordinates In the plane 

of a figure.  After that one should select the minimum value of change 

of flight time by a pulse along zero-direction. One should consider 

that in the general case of a nonorthogonal bench mark of correctable 

parameters the gradient of time has a projection on the plane of 

optimum correction of coordinates and, therefore, the correction of 

coordinates. In general, changes time of arrival. This forced 

variation of time depends on the value and direction of the correcting 

pulse in the reference plane. I.e., in the end, on values of 

corrected coordinates. The strongest forced change of time occurs, 

if the correcting pulse In the plane of reference Is directed along 

the projection of the time gradient to this plane. 

It is necessary to note that if the value of forced variation 

exceeds the assigned accuracy- of correction of time, then it must 

be taken into consideration during formation of the correctable 

deflection, since the optimum moment of approach with the planet 

depending upon the value of forced variation can be displaced 

to those or^ other days (In the examined case time will never require 

correction of more than 12 hours). 

/ 
It is Interesting to clarify the possibility of degeneration 

of correction characteristics in some point of trajectory. For this 

purpose in the work is investigated a matrix connecting motion 

parameters near the planet with the components of the correcting 
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pulse.     It Is shown that at an angular distance from the point of 
correction to the  place  of approach with the  planet equal to 180  , 
the examined matrix degenerates.    Not penetrating analytic details, 

we will examine the geometric meaning of this fact. 

At a point with an angular distance of 180° the correcting 
pulse  change only motion parameters  in the  plane  of the trajectory. 
The  pulse directed perpendicularly to the  plane  of trajectory 
turns   this plane around  the direction to the  Impact point and 
cannot  change in linear formulation coordinates  in  the plane of 
a  figure  for the planet.     If the plane of  orbits  of the planet and 
spacecraft are coplanar,   then correction of deflections along the 
blnormal is  impossible.    The ellipse of influence  in this case 
degenerates  Into a  line  segment oriented along the  line of 
Intersection of the plane of a  figure and   the plane of trajectory 
of  the  craft.    Any correcting pulse orthogonal to a gradient of 
such deflection  in the  plane  of a figure does not  cause in this 
case  change of coordinates  in the plane of a  figure - the plane  of 
optimum correction is not determined.    Therefore,   in the examined 
point   the zero-direction is  turned  into a  zero-plane perpendicular 
to the  shown gradient.     In all the remaining points of the trajectory 
there   is only a zero-direction lying in the  plane  of the  trajectory; 
however,   the effectiveness of correction of deflections along the 
linormal of the trajectory is  close  "o zero in the vicinity of a 
point with an angular distance of  180   . 

The  orientation  of the  plane of optimum correction significantly 
differs  from the one described.   If the orbit  of  the spacecraft and 
planet  do not  lie  in  one plane.    Tn   this  case   lateral deflection 
during correction  is   formed  by  two causes - change of inclination 
'o  the  plane of the  trajectory and change  of the  Instant of approach 
with  the planet.    The  latter cause  Is caused  by  the circumstance 
that   in case of noncoplanarity of the orbits  of  the planet and 
craft,   change of moment  of arrival  leads  to exit  of the planet  from 
the  plane of the  trajectory  of the craft,   i.e.,   to the appearance 
of a  component of displacement directed along the  blnormal. 
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It follows from this that In case of noncoplanar orbits of the 

craft and planet correcting deflections of speed In the plane of 

the trajectory, changing flight time, act on lateral deflection. 

in other words, the gradient of lateral deflection should have a 

component in the plane of the trajectory. Therefore, at the point 

oi" correction with angular distance 130° the gradient of lateral 

deflection becomes coplanar to the plane of trajectory. The plane 

of optimum correction In this point coincides with the plane of 

trajectory.  Let us note that the gradient of time in this case 

coincides with the gradient of lateral deflection, I.e., correction 

of time, regardless of change of lateral coordinate. In this point 

is Impossible. 

It is necessary to stress that given considerations indicate 

the necessity of Investigation of spatial motion during calculation 

of correction.  Correct evaluation of the value of correcting pulse 

can significantly differ from an evaluation obtained from sclutlon 

of a two-dimensional problem, since basic power expenditures for 

correction of lateral deflections essentially depend on the degree 

of noncoplanarity of the orbits of craft and planet. 

In a work of A. K. Platonov (1966) Is studied the possibility 

of degeneration of correlation characteristics in the geocentric 

section of flight. 

During flights to the moon and planets motion in the geocentric 

section of trajectory is close to parabolic. Investigation of the 

matrix of derivatives utilized during the work of correction on the 

assumption that motion occurs along a parabolic trajectory shows 

that the' matrix degenerates if the correctional point is in the 

perigee of the orbit. In this case the effective direction for 

correction turns out to be the only direction of flight speed and 

all three gradients of corrected parameters coincide. In the real 

case, the trajectory differs from parabolic and strict degeneration 

of correctional properties does not occur. However, the influence of 
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a pulse colllnear to the speed of flight considerably exceeds the 

Influence of a pulse orthogonal to the speed of flight.  Physically 

'his Is explained by the fact that at the beginning of the orbit, 

near its perigee, the spacecraft possesses high speed and for turn 

of velocity vector in space Is required a large lateral pulse. 

At the same time a comparatively small pulse directed alonp, the 

.elocity vector can considerably change the energy of geocentric 

-..o- Ion, since the change of energy is proportional to the velocity 

of flight.  Therefore, Influence on trajectory with the help of 

a velocity pulse leads basically to a change of those characteristics 

of motion which are connected with the energy of geocentric motion. 

In other words, near earth is practically possible correction of 

only one parameter of trajectory - either deflection In the plane 

of a figure along a certain direction or time of arrival. 

With passage of time of flight the situation changes. Deceleration 

with removal of the craft from earth facilitates change of direction 

of motion and leads to the possibility of affecting deflections in 

the plane of a figure orthogonal to the line of power Influence; 

.—aracterlstlcs of corrections of different deflections are levelled. 

The above-described results Illustrate the complex character 

of lependence of power expenditures on moment of correction.  The 

opinion that these expenditures are lower the earlier correction 

occurs, true for the last section of orbit, Is, In general. Incorrect. 

As was shown, on the trajectory are points where correction Is 

considerably hampered or Is simply impossible.  These points should 

•e avoided in organization of a single-time correction of orbits of 

sracecraft. 

A. K. Platonov examined also properties of correction In the 

final section of trajectory before approach with the planet.  In 

view of the proximity of the planet and the craft flying to It, 

their relative motion can be represented in the first approximation 

as uniform rectilinear motion, and the set of possible trajectories 

as a bundle of parallel lines. 



The plane of optimum correction In this case is a plane 

perpendicular to the axis of the bundle.  The ellipse of Influence 

Is a circle the radius of which is equal to the time remaining up 

t? incidence with the plane of a figure. Thus, outside of dependence 

on the values and mutual location of speeds of planet and spacecraft, 

the effectiveness of correction at the end of trajectory is determined 

by the time remaining up to approach with the planet.  In other 

words, effectiveness of correction is identical during flight to 

the moon and the planets of the solar system if correction is made 

with the same time remaining before incidence with the plane of 

a figure.  Another conclusion is the possibility of establishing 

the necessary direction of the engine for correction near the 

planet by rotation of the craft around the direction to ihe  planet. 

The work gives simple relationships determining the characteristics 

of correction in the section of flight near the planet. 

Above were described results of investigation of the characteristic 

of effectiveness of correction of motion of spacecraft in different 

points of flight paths to planets. If it is taken into account 

that only single correction of trajectory is possible, then obtained 

regularities permit comparatively simply selecting the moment of 

correction ensuring minimum power expenditures. However, in 

reality one should consider that the engine of the spacecraft allows 

repeated switching on and off of thrust. In this case in the 

problem of correction appear additional free parameters which can 

be used to decrease power expenditures. 

In a Kork of A. K. Platonov, A. A. Dashkov and V, N. Kubasov 

(1965), and also in a work of A. K. Platonov (1967) was considered 

the problem of selection of the best mode of multiple Ideal correction. 

Ideal correction usually means correction deprived of errors of 

forecast of motion and errors of its performance. 

In these works this problem was examined for the case of a 

limited acceleration. It was assumed that control is carried out 

for the purpose of keeping rated values of certain functlonals in 

trajectory, for example, coordinates in the plane of a figure of 
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the planet, and the minimlEed functional is the value of total 

characteristic speed. The problem was solved by a method developed 

In works of D. Ye. Okhotslmskiy and T. M. Eneyev (1957) of investigation 

of variation, which in this case permitted conducting an investigation 

of properties of obtained optimum conditions of control up to the 

end . 

It was shown that optimum direction of controlling acceleration 

in any moment of time should correspond to the point of the ellipsoid 

of influence having maximum projection on a certain constant vector 

In the space of corrected parameters, depending on the assigned 

correcting displacement. The engine should be switched on In 

points of the trajectory for which the projection exceeds a certain 

given value. A criterion of absence of conditions of multiple 

switching on of the engine was formulated consisting of the 

existence of an everywhere convex totality of ellipsoids of influence 

in any interval of the examined interval of flight time. Optlmumness 

of the pulse character of conditions of correction was also shown. 

Multiple ideal pulse correction was investigated in the above 

works of A. K. Platonov, A. A. Dashkov anü V. N. Kubasov (1965) and 

A. K. Platonov (1967). 

In this case a minlmlzable value is the sum of the moduli of 

correcting pulses. In spite of the fact that the space of correcting 

iarameters has special, non-Euclideaa metrics, for Investigation 

of the laws of multiple correction it is possible to use a procedure 

analogous to that used earlier. During investigation of single 

correction was examined a set of correction pulses equivalent from 

ihe point of view of optimization. This set formed a unit sphere 

In space of speeds or a unit circle in the plane of optimum correction. 

Conversion, of the examined figure of equivalent pulses in the space 

of corrected parameters permitted obtaining a figure of influence 

of correction pulses on corrected parameters, for example, an 

ellipse of Influence in the plane of a figure. 



Likewise from the totality of equivalent pulses of multiple 

correction can be obtained the figure of influence In the plane of 

a figure, with the help of which is investigated the influence of 

different parameters (for example, moment of correction, direction 

of pulse, etc.) on the total characteristics of correction. 

Thus, for example, with double pulse correction, every pair 

of pulses, the sum of the values of which is equal to one, corresponds 

in tne plane of a figure to a figure of Influence in the form of 

a parallelogram, consisting of straight lines connecting pairwise 

points of ellipses of influence corresponding to selected moments 

of correction. Every point of this parallelogram car. be corrected 

by a unit total pulse. Modifying moments of correction and direction 

of action of pulses, we will obtain a set of parallelograms filling 

the space inside the envelope tangent to the set of ellipses of 

Influence all variable with the passage of time of flight. If this 

envelope has straight sections, then there are deflections requiring 

double correction. 

It follows from this that for construction of the maximum 

figure of Influence of multiple correction it is necessary to roll 

the given set of ellipsoids of Influence of single correction with 

a straightening plane. The obtained figure determines different 

the tactics of correction, depending upon the direction of corrected 

deflection in the space of corrected parameters. The straightened 

sections of the obtained convex figure correspond to multiple switching 

on of the engine (double on a ruled surface, triple on a plane, etc.), 

and sections belonging to the Initial set of ellipsoids of influence 

to a single switching on of the engine. It follows from this 

that multiple pulse correction can be required only when the envelope 

of the set of ellipsoids of Influence in the examined Interval of 

time of flight is not everywhere convex; only then will straightened 

sections exist. Let us note that not everywhere is a convex set 

of ellipsoids of Influence possible only in case of nonmonotonic 

dependence of their characteristics on time. Otherwise there is 

always an ellipsoid embracing all the remaining ellipsoids of 

influence. 
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It follows from this that for every trajectory there Is a 

finite number of fixed moments and directions of pulses for optimum 

multiple ideal correction of selected corrected parameters. These 

moments and direction are determined by the points of contact of 

the straightening plane of the initial nonconvex set of ellipsoids 

of Influence. The maximum number of switchings on of the engine 

does not exceed the number of corrected parameters. 

Thus, solution of the problem of the best conditions of 

correction contains cases of multiple switching on of the engine 

even In the absence of control errors. Durine; such correction occurs 

alternate displacement In the plane of a figure along the most 

effective directions in such a manner that the total displacement 

Is equal to the assigned displacement. With every switching on 

of the engine, aiming in the plane of a figure is produced in a new 

l>o!nt, i.e., the characteristics of correction are determined from 

jlfferont conditions. Therefore, such correction can be called 

nonuniform multiple correction. In contrast to the usual case of 

uniform multiple correction, in which every subsequent correction 

corrects errors of the preceding correction, and conditions of 

correction remain constant. 

The nonmonotonic character of the dependence of characteristics of 

ellipses of influence on time of flight can be connected with 

degeneration of correction characteristics in a certain point of 

•rajectory. In such cases is observed a sharp Irregularity of 

iiiectlons in the plane of a figure from the point of view of 

effectiveness of correction. Single correction In points of 

le/eneration, as a rule, is practically Impossible. In such 

casein nonuniform correction can be powerfully profitable.  In 

•out rast to single correction, one of the switchings on of the 

engine can occur near the point of degeneration of correction 

■:iaracterlstics. The latter circumstance is explained by the fact 

that In this point of trajectory the effectiveness of correction of 

a certain linear combination of coordinates In the space of correcting 

parameters can be considerably higher than In the remaining points 
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of the trajectory. Therefore, it is expedient to correct such a 

component of corrected deflection namely In the examined point, and 

to correct the remaining component in any other point of trajectory 

more effective for them. An example of such a situation is a set 

of Influence ellipses given in a work of A. K. Platonov (1966) in 

the plane of a figure corresponding to flight to Mars, in the same 

place is built a figure of Influence of nonunlform correction.  The 

powerfully optimum correction of a majority of deflections is 

nonunlform correction with the switching on of the engine at the 

point of degeneration at the beginning of flight and then on the 
ninetieth day of flight. 

The described results do not depend on the form of the set 

of figures of influence. In particular, this set can correspond 

to correcting pulses, direction of which one way or another Is 

fixed in space.  In this case, and also In the case when the number 

of corrected parameters exceeds the number of Independent correcting 

Influences in each point of trajectory, application of nonunlform 

correction can be necessary regardless of considerations of minimization 
of total speed. 

Similar situations were examined in a work of V. N. Kubasov (1966) 

and in work of A. K. Platonov and Yu. D. Teterin (1966). 

In a work of V. N. Kubasov are Investigated features of the 

method of correction of interplanetary trajectories by a pulse 

directed along the line spacecraft - sun. With such a method of 

correction the system of orientation of a spacecraft can be rather 

simple. Single correction by the given method permits Independently 

changing only one parameter of trajectory - by changing the value 

of the correcting pulse with its direction fixed. Multiple nonunlform 

correction is necessary for correction of several parameters of 
trajectory. 

In the work it appears that the total possible number of 

corrected parameters with such "solar" correction cannot exceed four. 
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It also appears that during "solar" correction of coordinates 

in the plane of a figure correction of the time of approach with 

the planet is impossible. The latter circumstance is explained 

hy the fact that during "solar" correction the correcting pulse 

belongs to the plane of trajectory and therefore the orientation of 

the plane of trajectory cannot be modified.  In view of this 

with noncoplanar orbits of spacecraft and planet, approach of 

craft with planet is possible only at that moment of time when the 

planet passes the node of the orbit of the craft in the plane 

of the orbit of the planet. 

In the work ]s investigated also the optimum possible strategy 

during such "solar" correction. 

In a work of A. K. Platonov and Yu. D. Teterin are investigated 

properties of correction of two or three parameters of spacecraft 

trajectory when the correcting pulse should belong to a certain 

plane oriented in a certain way in space. 

Such limitation can be dictated by conditions of simplicity 

of spacecraft construction. 

Actually, with optimum correction, depending upon corrected 

errors, the correcting pulse can b<-  directed in space in any manner. 

This means that for spacecraft should be provided a corresponding 

system of orientation having at least two degrees of freedom 

relative to fixed stars. Simpler is a system of orientation having 

only one degree of freedom and allowing rotation of the spacecraft 

around a certain axis.  The axis of rotation besides can be directed 

towards any bright star, for example, the sun, and the correcting 

i.ulse can be disposed in a plane perpendicular to this direction. 

Correction in this case can be called two-component correction 

since there are only two free components of the correcting pulse 

correcting not more than two independent trajectory parameters. 

In the work it is shown that In flights to outer planets, there 

ace sections of trajectory where the characteristics of such single 
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correction of two trajectory parameters differ little from the 

characteristics of optimum correction. 

The need to correct three parameters of trajectory requires 

the carrying out of double correction with nonunlform conditions of 

correction - in such a manner so that as a result of two two-component 

corrections three selected parameters of trajectory took on the 

rated value. In the work are investigated general properties of 

such two-component three-parameter double nonunlform correction. 

Also investigated are special properties of correction of coordinates 

in the plane of a figure of the planet and the time of flight when 

the correcting pulse lies In a plane orthogonal to the direction 

to the sun. 

It is shown that in linear approximation In the plane of the 

first correction Is a direction depending only on the selected two 

moments of correction such that the component pulse of correction 

along this direction does not change corrected parameters. It is 

shown also that for the examined solar correction orientation 

of such zero-direction does not vary during the period of the whole 

flight and coincides with the orientation of the blnormal of the 

trajectory. This permits formulating simple rules of strategy 

during such double correction. 

General requirements for systems of correction of Interplanetary 

trajectories are examined in a work of A. A. Dashkov (1966). In 

this work on the basis of analysis of properties of trajectories 

are determined the basic requirements for accuracy of fulfillment 

of correction during flight to Mars, Venus and the moon, and are 

also discussed certain possible schemes of spacecraft orientation 

during correction. One of the most interesting methods of orientation 

of a spacecraft near a planet, useful for correction purposes, is 

described in a work of A. A. Dashkov and V. V. Ivashkln (1965). 

This method was used during flight of Soviet automatic lunar stations 

for maneuver near the moon. 
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The characteristics of correction of flight paths to Mars and 
Venus were examined also in a work of A.  K.  Platonov  (1966).    The 
characteristics of correction of flight paths  to Jupiter are 
examined  in a work of R.   K.  Kazakova,  V.   0.  Kiselev and A. K.   Platonov 

(1967). 

Thus,   the problem of selection of the most effective conditions 
of correction of the  obtained orbit can be considered at  present 
sufficiently developed. 

Further investigations  In this problem have  to be directed 
towards  search of reliable and  fast algorithms  of determination of 
optimum points of switching on of a  correcting engine. 

The most  Interesting ani at  the same  time  the  least developed 
problem at  präsent is   the  problem of optimum distribution of measure- 
ments and correctional acts on trajectory. 

The formulation of this problem Is contained  In a number of 
foreign and domestic works   (A.  Rozenblyum,   1961;    >.  N.  Duboshin 
and D.  Ye.  Okhotsimskiy,   1963). 

The complexity of the examined  problem consists  of the  fact 
that  solution of the problem of correction  Is  connected with  the 
necessity of exact determination of actual parameters  of motion 
lurlnp;  flight.     In turn the accuracy of ietermlnation  of the 
actual  orbit  depends with a given composition and accuracy of measure:! 
(»rameters  on the  location of  the measuring  Interval   in orbit  and 
Its extent.    Tightening the phase of measurements  leads, as a  rule, 
to displacement of points of correction to n   region of smaller 
effectiveness. 

An unpleasant circumstance   la  the  lepenJence of. In general, 
of  the accuracy of determination  of the orllt   of  the craft  In a 
certain  Instant  of fU^ht   on the M^iltule,  direction and pi*«»  of 
anllca'lon of correcting: julre»  In the paat   »nl  in the  future. 
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A  priori errors  of performance of future corrections are knowingly 
non-Gaussian in nature,   in view of their dependence on the  correcting 
pulse   (this  circumstance was given attention by M.  L.   Lidov). 
Ilnally,  the above-mentioned  results  show that  the optimum points 
of correction can  gravitate to certain fixed  points on the  trajectory, 
if nonuniform correction is optimum.     In this case subsequent 
distribution along the trajectory of correctional acts  depends  on 
the direction of displacement in the space of corrected  parameters 
and varies with change in forecast values. 

The greatest difficulties at present are  in the mathematical 
formulation of the problem of optimum strategy of correction. 
Such a formulation should,  on the one hand,  ensure the possibility 
of solution of the problem, and on the other hand, be sufficiently 
strict and allow revealing the basic effects and regularities  In 
its solution.    This first of all pertains to selection of a criterion 
of optimumness during the carrying out of correction. 

In spite of the fact that  in every concrete flight  it  Is necessary 
to carry out correction not on the average,  but "almost surely," with 
a probability close to one, during the first attempts to solve  the 
described problem as a simpler criterion of necesb'.ry power expenditures 
was examined mathematical expectation by the total characteristic 
of speed In the presence of random errors of measurements.    In such 
a formulation the problem is examined by V. A. Yaroshevskly and 
3. V.  Parysheva  (1965), who Investigated a one-parameter ideal 
correction.    For the case of Oauaaian errors of measurements and 
the absence of errors of adjustment of pulses  the problem Is solved 
up to the end.    On the assumption that  the value of correcting 
pulses linearly depends on all preceding values of deflections of 
the corrected coordinate from the nominal value, are obtained 
exprasslona dataralning the minimum mathematical expectation of 
consuaptlo.i on correction, ai.   a simple procedure for detarmlnatlon 
of optimum moments of correction In the plane effectlveneas of 
correction - accuracy of forecast.    Thar« Is shown the optimum 
luallty of "under correction" - during every correction one should 
compensate only part of the deflection of the coordinate from the 

ia 



rated value.    In the work Is also made a comparison of discrete and 
continuous correction  for simple model problems. 

Realizing the weakness of the criterion of optimumness of 
correction in the  form of minimum mathematical expectation of total 
speed and at  the same  time wishing to preserve simplicity of 
computations and analysis,  the authors propose using as a criterion 
of optimumness a certain expression composed  of mathematical 
expectations of separate pulses and approximately equal to the 
maximum value of total speed  realized with  the assigned probability. 

In a werk of V.  A.  Yaroshevskly and  0.   V.   Farysheva  (1966)   is 
examined  the problem of correction of altitude and speed  in the 
pericenter of trajectory of a  spacecraft approaching a planet  of 
assignment.    The optimum number ani   jlstrlbution of pulses  is 
ietermined  for a different character of change  of accuracy of 
letermlnation of trajectory with change of distance  to the planet, 
initial miss and  the distance of the  last  correction.    The problem 
Is  solved  is assuming the presence of errors  of adjustment of pulse 
not  depending on  its  value.    The mathemtatleal expectation of the 
•otal characteristic speed of correction  is •..Inimlred on the 
assumption that correctlrg pulses have a  transverse direction 
(this direction is clos*   to optimum if correction la made at a 
ilstances greater than 2-3 planet  radii). 

In a more general  formulation t^e problem of sratlstlcally 
ortinum pulse correction  Is examined  In a work of I.  A.  Pogualavakly 
tl&d).    In  the work  Is assumed   Independence of errors of measuremantt, 
errora of performance of correction, and also errors of evaluation 
or miss  In a certain point  of trajectory with errors  of performance 
of correction In subsequent points of trajectory.    The problem It 
Investigated of detecting during the designing of a system of 
correction of a method  of «election of optimum correcting pulses  In 
all joints of trajectory fixed   for correction besides the  last one. 



It   is assumed  that the method  of selection of the  last pulse 
maximizes  the possibility of spacecraft  Incidence  in assigned  region 
of permissible miss, and  the method of selection of preceding pulses 
minimizes a posteriori estimators of random variable of total 
ci.aracterlstlc speed of correction;  by experiment are considered 
flight  to a selected point  of correction,  determination according 
to the results of measurements  of vector of miss and application 
of a pulse  In the selected point of correction  (with exact measurement 
of its actual magnitude and direction). 

Initially  is examined  the  simpler problem of minimization of 
aposteriori   (in the above sense) mathematical expectation of total 
characteristic speed of correction, under the condition that  the 
probability of hit of the   spacecraft   In a fixed region is equal 
to the maximum value on a set of correcting pulses at  the point of 
last correction.    In general form Is described a procedure of detect In. 
of the solution of the problem at hand,  based on the method of 
dynamic programming.    In the appsndlx to the work la given a method 
of selection of optimuir. pulses  of double one-dimensional correction 
(analogous  to the one examined  In a work of V. A. Yaroshevskly and 
J.  V.   -arysheva,   1965). 

Further is examined th« problem of minimization of the maximum 
value of total speed of correction determined by the assigned  (close 
to zero)  level of probability of the fact that the total speed of 
correction will exceed the maximum value shown.    It  is shown that 
with Independent errors of observations and performance of correction 
(Independence of errors of determination of miss from errors of 
realization of pulses in preceding points is not required) for 
solution of the problem at hand the procedures of dynamic programming 
are sufficient.    In general form is described a procedure for fixed 
aooents of correction.    In the appendix to the work is given an 
example of such a method for the case of one-dimensional double 
correction with Independence of forecast errors from errors of 
realitatior. of pulses - in this case the procedure is essentially 
simplified. 
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For the case of absence of errors  of performance of correction 
is proven the necessity of "under correction"  both in case of 
minimization of the mathematical expectation of total speed and in 
case of minimization of maximum value of total speed.    At the point 
of the  last correction "under correction"  is not optimum.     It  is 
also shown that with hit of the vector of miss  in a certain region 
the optimum pulse  in a given point of trajectory is equal to zero, 
where  the dimensions of the  region are   less  the higher the   level 
of probability of maximum value of total speed and the greater the 
errors  of forecast   in subsequent  instants.    The dimensions  of 
this   region are even greater the greater the error of performance 
of correction.    During calculation of errors  of  realization of 
pulse  "under correction"   In the  last  point becomes optimum. 

In the example of the one-dimensional problem examined   in the 
appendix is  investigated  the influence of the criterion of 
optlmumness of a double one-dimensional correction on a value of 
"under correction"   in different points  of trajectory.    As criteria 
of optlmumness of correction are examined  the mathematical expectation 
of total characteristic speed,  the approximate expression for maximum 
value of total characteristic speed  (close to the expression 
proposed by V. A.  Yaroshevskiy and 0.  V.  Farysheva for the criterion 
of optimum correction) and,  finally,   the maximum value of total 
•haracterlstlc speed  realized with tsslrned protatlllty close  to 
one.     It  Is  shown  that maximum "under correcior."  Is  obtained   In 
the case of application of the first  of three criteria and   that the 
other two criteria  lead to approximately  Identical values of 
"under correction,"  considerably  lower  In value. 

The most  severe  formulation of the  proHem of detecting 
optimum strategy of correction of flight path of spacecraft  is 
contained in works of P.  Ye. Okhotslmskly,  V. A.  Ryasin and 
:;.  :.'. Chentsov (19^7).    In a work of V.  A. Ryasin (196c)  Is examined 
a simple model problem about single one-parameter correction.   In 
an example to which the author was alle  to demonstrate a general 
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approach to the  problem of correction as to the  problem of detecting 
o; :Imum strategy  In a game with nature.    Namely,   Into consideration 
U   introduced a  space of elementary outcomes unknown  to the observer 
the elements of which are errors of guidance of the  spaceship Into 
orbit and errors  of tracking  Its motion having a known probability 
of distribution.    Further into consideration is Introduced  inforiKition 
space known to the observer the elements of which are selection of 
•otalitles of possible measurements of characteristics of motion 
for different  flight paths of the spacecraft.    The  set of possible 
noments  of correction and correcting pulses  is  the  space of control. 
It  Is shown that  if measurements are taken in fixed   Instants and 
effectiveness of correction varies monotonically,   then it   is 
sufficient   to examine the subclass of control for which correction 
Is made   in any of the  instants  coinciding with moment.", of measurements. 
Of all controls are examined  only those for which the value of 
total speed of correction does  not exceed the given -alue.    Further 
Is  Introduced the  idea of strategy,  which Is defined as a measurable 
function assigned  in information space with values   xn the apace of 
controls.     In other words,  every set of measurements along the whole 
•rajectory is coordinated with certain instants and correcting pulses 
according to a  rule determined by strategy).    With every selected 

strategy  is connected a certain set of possible errors with a known 
probability  in the space of elementary outcomes and,  consequently, 
a definite probability of hit   in the region of permissible errors 
in the  space of corrected parameters.    If this probability is 
maximum,   then the corresponding strategy  is optimum.    The problem 
Is to establish the existence  of optimum strategy and to give a method 
of its construction. 

Iri the given formulation are absent errors of performance of 
■orrection;  however,  they can be considered expanded  by determination 
of the apace of elementary outcomes. 

The basic  result of author,  undoubtedly,  beneficially affecting 
the trend of further investigations,  is the idea about the fact 
•.hat the  search for optimum strategy signifies the search of a certain 
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partition of  information space  into regions corresponding to the 
carrying out  of correction in identical  Instants,  and   the  construction 
of optimum functions  for determination of  the characteristics  of 
the correcting pulse  In each point  of information space.     Moreover, 
in the work is proved that making certain,  very general,  assumptions 
with any partition of Information space can be  found  functions which 
are optimum functions of the correcting pulse.     In other words,   it 
Is possible   to examine only strategies  in which the  function of 
correcting pulse does  not depend  on  the  function of the moment of 
correction,  and  to detect  in this  subclass of strategies  the strategy 
with optimum moments of correction. 

Optimum functions of correcting pulse  in information space can be 
selected   regardless  of Its  partition.    The  optimum partition of 
Information space depends on  the  functions of the correcting pulse 
and can be  found with  the help of  the  principle of dynamic  programming. 
In the work is  proved  that every  such region of information space 
constitutes a cylindrical set with a base  in the subspace of measure- 
rnents preceding the moment of carrying out  of correction;   the 
decision about correction is made on the basis of past  information 
and does not depend  on future  information.    The shown regions of 
Information  space corresponding  to  identical moments  of correction 
do not cross,  and  their sum composes  the whole space.     Therefore, 
'ne procedure  of search for optimum partition of  Information space 
looks as  follows: 

1) construction  In the whole   Ir.r'ormatlon space  of characteristics 
.tf the magnitude and  direction of   the  correct In.' pulse  supplying 
»he maximum probability of  fulfillment   of  the assignment  during 
flight; 

2) determination  in all of  infortnatlor  space of  the  probability 
of fulfillment  of assignment with  the uso  of the  luixt  optimum 
corractlng pulse  functions; 
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3) sequential,   starting with  the end of flight,   separation 
in  information  space of sets  of elements for which fulfillment of 
correction in a piven moment   leads  to a greater probability of 
success  than  fulfillment of correction In subsequent  instants, 
taking  Into account new information; 

4) partition of information space to unknown regions is as 
follows:    separation of a set for which the carrying out of correction 
in the   first moment  is the most optimum;  separation then of the 
crossing of  the remaining part of the information space and the set, 
for which the  carrying out of correction in the second moment 
is more  optimum than  in later moments; separation of the crossing 
of the  remaining part of information space and the set for which 
the carrying out of correction in the third moment  is more optimum 
than in  the one following it,  etc. 

The process of making the decision about correction consists of 
the following.    In consecutive  Instants the observer obtains a 
selection of measurements.     If after the first measurement the 
observer discovers that  this measurement belongs  to the base of the 
cylindrical region of correction  in the first instant,   then correction 
is made in the first instant;  otherwise a second measurement is 
taken,  and  it   is checked whether the obtained selection from two 
measurements  belongs  to the base of the cylindrical region corresponding 
to the carrying out of correction in the second  instant,  etc. 

Finding of optimum regions involves great difficulties and  is 
facilitated in the case of normally distributed errors.    In the work 
is given a solution of the problem for the case of a one-parameter 
ideal correction within the bounds of a model formulation with Gaussian 
errors of removal and measurements. 

In a work of D.  Ye.  Okhotslmskiy, V. A.  Ryasin, and N. N.  Chentsov 
(1967)   the described method  is used  for the case of one-parameter 
double  ideal correction. 
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Strategy  In double correction  Is determined by the partition 
of information space  into cylindrical sets corresponding to Identical 
moments of carrying out two corrections to which are assigned 
controlling functions of the first and second correction.    A 
theorem is given of the existence of the optimum strategy of double 
correction.    It  is shown that  the value of "under correction"   tends 
to zero with Increase  in accuracy of measurements.    With almost 
exact measurements optimum strategy can be essentially simplified. 
An example of close  to optimum strategy of double correction  is given. 

Thus,  the problem of optimum correction of orbits of spacecraft 
by the efforts of Soviet scientists   Is  investigated and   in considerable 
degree  is advanced on the way to solution.    Basic efforts were 
directed  towards detecting optimum conditions of correction,   investiga- 
tion of general properties of correctional maneuvers,  selection of 
convenient corrected  parameters,  construction of technically simple 
methods of correction,  detecting of approximate criteria of optimumness, 
which allow solving the problem by  simple means.   Investigation with 
the help of model problems of basic effects and regularities 
during optimum imperfect correction,  on strict formulation of the 
problem of optimum imperfect correction and detecting of methods 
of Its solution.    Successes of Soviet  scientists  in the  region of 
practical application of the  theory of optimum correction  is 
Indicated by  the carrying out of corrections of orbits of spacecraft 
la inched  by the Soviet Union  to the moon and planets of the solar 
system (see:    "Investigation of upptr atmosphere and outer space." 
Report of KOSPAR,  9th plenum,   Vienna,   19»f). 
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